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David K. Arrowsmith1 Raúl J. Mondragón-C. 2 Congestion and Centrality in Data Networks



Congestion in a Simple Network
Betweenness Centrality

Conclusions

Motivation
Congestion in Regular Networks
Delay and Total Number of Packets in the Network
Mean Field Approximation

Introduction

I In a “simple regular” data/packet network
the onset of congestion (a dynamical
characteristic) depends on the average of all
shortest path lengths (a topological
characteristic).

I Is the above result valid for a large set of
network topologies?

I Can this result help us when simulating very
large networks?

Ohira and Sawatari, 1998; Fukś and Lawniczak, 1999; Solé and Valverde, 2001;

Woolf et. al, 2002.
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Congestion in a Manhattan Network

I Consider a Manhattan-toroidal network with
S nodes.

I Each node contains a queue where packets
can be stored in transit (if the node is busy).

I The proportion of sources/sinks of traffic is
ρ ∈ (0, 1], i.e. #sources = ρS .

I Each traffic source generates, on average,
the same amount of traffic λ per unit time.

I The packets are sent through the shortest
and/or less busy route.

I If one node is busy (queue busy), then
another route is chosen.
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David K. Arrowsmith1 Raúl J. Mondragón-C. 2 Congestion and Centrality in Data Networks



Congestion in a Simple Network
Betweenness Centrality

Conclusions

Motivation
Congestion in Regular Networks
Delay and Total Number of Packets in the Network
Mean Field Approximation

Congestion in a Manhattan Network

I Consider a Manhattan-toroidal network with
S nodes.

I Each node contains a queue where packets
can be stored in transit (if the node is busy).

I The proportion of sources/sinks of traffic is
ρ ∈ (0, 1], i.e. #sources = ρS .

I Each traffic source generates, on average,
the same amount of traffic λ per unit time.

I The packets are sent through the shortest
and/or less busy route.

I If one node is busy (queue busy), then
another route is chosen.
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Congestion in a Manhattan Network
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Delay and Congestion

I τsd is the journey time from s to d .

I For low loads, τsd ≈ `sd , the shortest path length from s to d .

I For higher loads, τsd ≈ `sd+ delays due to the queueing.

I If the traffic load increases even further, then at the critical
load λc , the queues of some nodes will grow very rapidly and
the average delay time will diverge.

I At this critical load, we say that the network is congested.
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Delay and Congestion
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Total Number of Packets in the System and Congestion

I Total number of packets in the
network at time t:

N(t) =
∑S

i=1 Qi (t),
Qi (t) is size of queue i .

I In the free flow state,

N̄ = limT→∞
1
T

∑
T N(T ) is

finite.

I At the congestion point, the
queues of the congested nodes
begin to become unbounded
⇒ N̄ →∞ .
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Definitions and Assumptions

I The network is represented by the graph G = (V, E), where V
is the set of nodes (vertices) and E is the set of links (edges).

I The total number of nodes is denoted by S .

I The graph is undirected and connected.

I The minimum distance between vertices s ∈ V and d ∈ V is
denoted by `sd (shortest path between s and d).

I The characteristic path length

¯̀=
1

S(S − 1)

∑
s∈V

∑
d∈V\s

`sd .

(sometimes ¯̀ is referred as the diameter of the network)
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Mean Field Approximation

Little’s Law
“The average number of customers in a queueing system is equal
to the average arrival rate of customers to that system, times the
average time spent in the system”, (cf. Kleinrock 1975).

Formulation

d N(t)

d t
= ρSλ− N(t)

τ(t)
.

I ρSλ is the average arrival rate to the queues per unit of time,

I τ(t) is the average time spent in the system, and

I N(t)/τ(t) is the number of packets delivered per unit of time.
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Mean Field Approximation. Little’s Law
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Little’s law does not depend on

I the arrival distribution of packets to the queue, or

I the service time distribution of the queues, or

I the number of queues in the system or upon the queueing
discipline within the system.
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Mean Field Approximation. Congestion

Estimating the time delay

I If the load is low, the delay is the time given by the length of
the shortest path. The average delay is then the average of
the shortest paths τ̄ ≈ ¯̀.

I If the load is high, the delay time is the length of the shortest
path plus the time a packet spends on the queues.

I If we assume that, on average each queue contains N̄/S
packets

τ(t) ≈ τ̄ ≈ ¯̀(1 + Q̄) = ¯̀
(

1 +
N̄

S

)
.

I ! we are approximating the delay time using the average
queue size.
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Mean Field Approximation. Congestion

Estimating the critical load λc

I From the steady state solution dN(t)/dt = 0 the traffic load
generated is

λ =
1

ρ¯̀(1 + S/N̄)
.

I At the congestion point the average number of packets

diverges, i.e. N̄ →∞ so the critical load is

λc =
1

ρ¯̀.
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Betweenness Centrality

I Consider the journey time between two nodes in the network
where there is at least two shortest paths between the nodes.

I The journey time of two shortest paths with the same length
can be very different due to the different patterns of usage of
the routes.

I The reason is that some nodes are more “prominent” because
they are highly used when transferring packet-data.

I A way to measure this “importance” is by using the concept
of node betweenness centrality (also called load or just
betweenness).
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Centrality: Definitions

I The number of shortest paths from s ∈ V to d ∈ V is denoted
by σsd .

I The number of shortest paths from s to d that some v ∈ V
lies on is denoted by σsd(v).

I The pair-dependency of a pair s, d ∈ V on an intermediary
v ∈ V is

δsd(v) =
σsd(v)

σsd
.

1 2

2 1

3 3
s          d

1/3 2/3

2/3 1/3

1 1
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Betweenness/load/Betweenness Centrality

CB(v) =
∑
s∈V

∑
d∈V\s

δsd(v), v ∈ V

A small modification

CB(v) = CB(v)− 1
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An improvement to τ̄

I Characterise the node usage
using the normalised
betweenness centrality

ĈB(w) =
CB(w)∑
v∈V CB(v)

.

I approximate the average queue
size using Q̄w ≈ ĈB(w)N̄

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 10 20 30 40 50 60 70 80 90 100

"centAB.dat" u 1:(20*$2)
"loadAB0.05.dat" u 1:3

Queue label

A
ve

ra
g

e 
Q

u
eu

e

Numerical experiment
From approximation

low traffic load
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ĈB(w) =
CB(w)∑
v∈V CB(v)

.

I approximate the average queue
size using Q̄w ≈ ĈB(w)N̄
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An improvement to τ̄

I The approximation to the average delay time for a route Rsd

from s to d is

τ̄ ≈ ¯̀+
1

S(S − 1)

∑
s∈V

∑
d∈V\v

 ∑
v∈Rsd

ĈB(v)N̄

 = ¯̀+ DN̄.

where v ∈ Rsd is the set of nodes visited by the route.

I ! we are taking the average of averages.

I Using the new approximation to τ̄ .

λc =
1

ρS D
.
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An improvement to λc

I The equation

λc =
1

ρS D

simplifies to λc = 1/(ρ¯̀) in the case of regular networks.

I this is obtained by exploiting the property that

`sd =
∑
w∈W

δsd(w)− 1,

where W is the set of nodes visited by the shortest paths from
s to d .
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Betweenness Centrality
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Fukś and Lawcnizack Observation

I Take a Manhattan toroidal network

I add a few new random links

I the onset of congestion occurs more readily
when adding these new links to the original
network

I this is because, the new links “attract”
traffic, the nodes containing the extra links
congest more easily
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Fukś and Lawcnizack Observation

I The original
network has 200
links

I we compare the
prediction using
λc = 1/(ρ`) and
λc = 1/(ρSD)

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

200 220 240 260 280 300

"Fks1.dat" u 1:(1/$3)
"Fks1.dat" u 1:(1/($4*100))

"Fks1.dat" u 1:5

number of links

lc

1
r

1
rS

I Similarities with Braess’ Paradox?
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Another improvement

The queue discipline is M/D/1

I The average length of the queue is approximated by

Q̄i = Λi +
Λ2

i

2(1− Λi )
≈ N̄Di

Λi is the total traffic rate into vertex i relative to critical load.

I The average delay time is

τi =
Λi

2(1− Λi )
≈ 1 + N̄Di −

√
1 + (N̄Di )2

2(
√

1 + (N̄Di )2 − N̄Di )
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Number of Packets in the Network

Using

ρSλ− N

τ
= 0
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"resPlot.dat" u ($1/0.129):3:4
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l/lc

N

first approx. N=rSll/(1-rll)

second approx N=rSll/(1-rDl)

third approx

from simulation

 rSllF(N)-N=0
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Limitations

I The quality of the predictions
varies according to the types of
graph: regular (good),
trees(bad);

I The delay time approximation is
not uniformly good;

I the problems of mean field
approaches to congestion are
shown up by the queue
dynamics movies for the
networks:
Manhattan(Woolf,2004);
Scale-free(Valverde,2005).
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