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Sets and notation

A set is a collection of objects (or elements).

Let us introduce symbols so that we can describe such a structure.
If the set X is the collection of four objects a, b, c and d . We write

X = {a, b, c , d}.

This is called a listing of the set X .
The listing within the ”curly brackets” is the set of elements of X .

If x is an element of the set X , we write x ∈ X .

If, for example, X = {a, b, c , d}, then we can write a ∈ X .
Similarly, b ∈ X , c ∈ X and d ∈ X .

The set with no elements is called the empty set and denoted by ∅.
So ∅ = { }.
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Examples of sets are obvious

1 X1 = {1, 2, 3, 4}
2 X2 = {1, 2, 3, 4, 10}
3 X3 = {Monday ,Tuesday ,Wednesday}
4 X4 = {Mercury ,Venus,Earth,Mars, Jupiter}
5 X5 = {Mercury ,Monday}

Exercise

Distinguish between the following four statements:
5, {5}, {{5}}, {5, {5}}.
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Further set notation

If every element of a set A is also an element of the set X , then A
is said to be a subset of the set X , or equivalently X is a superset
of A.

We write A ⊆ X or X ⊇ A.

For example: A = {1, 2} is a subset of X = {1, 2, 3} or,
EQUIVALENTLY, X is a superset of A.

If we know that A 6= X , and A ⊆ X , we say A is a proper subset
of X and we write A ⊂ X

Note X is also a subset of X , i.e. a set is always a subset of itself,
but it not a proper subset!
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Some KEY sets

Natural numbers N
the set of natural or counting numbers N which can be listed as
{1, 2, 3, . . . };

Integers Z
the set of integers Z which can be listed as {0,±1,±2,±3, . . . }
or {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . } .

Real numbers R
the set of reals R which is the continuum of positive, negative and
zero distances on the real number line.

All three sets can be represented as points on the real number
line R.
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Listing and describing sets

Listing sets

This is when we write out the list of elements separated by
commas which form the set X . For example X = {a, b, c}.

Describing sets and qualifiers

Sometimes, instead of listing all the elements, we write a set in the
form X = {x |p(x)}, which reads ”X is the set of elements x from
some universal set U for which the statement p(x) is true”. The
statement p(x) is the qualifier for the element x to belong to the
set X .

Example Let U = N and give the listing of the set
X = {x | x2 is less than 100}.
X = {1, 2, 3, . . . , 9}.
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Describing sets

Exercise - list the elements of each set X described below

1 Let U = Z and give the listing of the set
X = {x | x2 is less than 100}.
X = {0,±1,±2,±3, . . . ,±9}.

2 Let U = N and give the listing of the set
X = {x | x2 is less than 100; }

3 Let U = Z and give the listing of
X = {x | x is one of the first four positive integers};

4 Let U = Z and give the listing of
X = {x | x is an even integer such that 17 < |x | < 28};
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Some more examples

1 X is the set of the possible outcomes of tossing a coin three
times (heads(H) or tails(T));

2 X is the set of the integer solutions x of the equation
x2 − 3x + 2 = 0;

3 X is the set of the integer solutions of x3 − 3x + 2 = 0;

4 X is the set of the integer solutions of x3 − 5x + 4 = 0;

5 X is the set of the possible outcomes of tossing a pair of coins
twice;

6 X is the set of the integer solutions of x + 1 = x .
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What are some universal sets that could be chosen in each of these
cases?

Write the following sets in ”statement” form

1 {1, 3, 5, 7, 9}; U is the set of integers; OR ....

2 {Jack ,Queen,King};U is a suite of 13 playing cards, e.g.
Diamonds

3 {cube, tetrahedron, dodecahedron}; U is the set of regular
solids
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Function

A function relates elements of two sets , say X and Y , in a special
way. A function f is often denoted by f : X → Y , meaning that for
each element x ∈ X , the function f produces an element y ∈ Y .

We write f (x) = y .

You can think of a function as behaving like a black (or BLUE!)
box with an input x and an output y .

You input an element of X into the blue box, and it outputs an
element of Y . It produces an element of Y for every element of X ,
and every time you input a particular element of X , you always
obtain the same element of Y .
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Venn diagram illustration of a function

The red arrows indicate that an element x of the set X is mapped
to a element y of the set Y . Note for every x ∈ X there is exactly
one arrow which goes to a point of Y . This is showing that given
x , the function f produces just one y . Also, note that not all
elements y ∈ Y are realised as an f (x).
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Sometimes the function f can be described by a formula, but not
always.

Examples

(i) X = Z and Y = N. Define f : X → Y by x 7→ x2. Thus
f (−2) = 4; f (9) = 81.
(ii) X = {1, 2, 3, 4} and Y = {a, b, c}, and f : X → Y defined by
f (1) = c , f (2) = b, f (3) = c , f (4) = a.
Note in example (i), not all elements of Y arise as images of
elements of X by the function f . In example (ii), all elements of Y
are obtained by applying f .
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onto function

A function f : X → Y is said to be onto if for every element of
y ∈ Y , there is an x ∈ X such that f (x) = y . In the example
above (ii) is onto, and (i) is not onto. The idea of the word onto is
that f maps X onto the whole set of elements of Y .

1-1 function

A function is said to be one-to one or 1-1 if for every pair of
distinct points x , x ′ ∈ X , the points f (x) and f (x ′) are also
distinct.
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Exercise

Can you find examples of functions f : X → Y which are different
combinations of onto and 1-1.
Give 4 examples as Venn diagrams: f is (i) onto and 1-1, (ii) not
onto but 1-1, (iii) not 1-1, but onto, and (iv) neither onto nor 1-1?
Give 4 examples as Venn diagrams: f is (i) onto and 1-1, (ii) not
onto but 1-1, (iii) not 1-1, but onto, and (iv) neither onto nor 1-1?
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(i) function; 1-1 ; onto

(ii) function; 1-1, not onto
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(iii) function; not 1-1; onto

(iv) function; not onto ; not 1-1
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not a function - give 2 reasons why it is not a function
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1-1 and onto

If f : X → Y is both 1-1 and onto, then it is called a 1-1
correspondence.

Why call f a 1-1 correspondence?

Consider the set of pairs (x , f (x)) for each x ∈ X . Then for every
x ∈ X , there is a unique y = f (x) ∈ Y . Given y ∈ Y , since f is
onto, there is an x ∈ X such that f (x) = y . So for every y there is
an x . Moreover the x is unique, there is only one such x since f is
1-1.
Therefore the pairs (x , f (x)) form a correspondence of unique
pairings of ALL the elements of X with ALL those of Y .

In that sense, the sets X and Y are seen to have the number of
elements or cardinality
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Cardinal number of a set

Consider the set Sn = {1, 2, . . . , n}, the first n-integers. We say
that the cardinal number of the set Sn, that is ](Sn) is the
number of elements in the set Sn and that is denoted by n.
Every set in 1-1 correspondence with Sn has cardinal number n.

We write ](Sn) = n which reads ”the cardinal number of Sn is n”,
or the number of elements in the set Sn is n.
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Exercise

Show that T = {1, 12 ,
1
3 , . . . ,

1
n} has cardinal number n. To do this

you need to find a 1-1 correspondence between the sets Sn and T .

the 1-1 correspondence

the 1-1 correspondence that we need is f : Sn → T given by
k 7→ 1/k, i.e. f (k) = 1/k , for k = 1, . . . , n. So ](T ) = n
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Infinite sets

An infinite set is one that is not finite! - that is a set that is not in
1-1 correspondence with Sn for some n.

The set N is an infinite set

What is its cardinality? - well it is NOT any integer n.

Infinite cardinal

Let us use the symbol ℵ0 for the cardinality of N. The set N is said
to countably infinite because the element can be counted in a
single list.
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Hilbert’s paradox-or “infinite sets are not what they seem!”

From Wikipedia

Hilbert’s paradox of the Grand Hotel is a veridical paradox (a valid
argument with a seemingly absurd conclusion), as opposed to a
falsidical paradox, ( a seemingly valid demonstration of an actual
contradiction) about infinite sets presented by David Hilbert in the
1920s, meant to illustrate certain counterintuitive properties of
infinite sets.
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Finitely many new guests

Suppose the hotel is FULL - that is every room has a guest. Then
a new guest arrives and wishes to be accommodated in the hotel.
Because the hotel has infinitely many rooms, we can move the
guest occupying room 1 to room 2, the guest occupying room 2 to
room 3 and so on, and fit the newcomer into room 1. By repeating
this procedure, it is possible to make room for any finite number of
new guests.
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Exercise With Infinitely many new guests, can we accommodate
them?

Suppose the list of guests already in the hotel is
{g1, g2, . . . , gn, . . . } and the infinite list of new guests is
{ng1, ng2, ng3, . . . }.
How do we reshuffle the room allocation to accommodate the new
guests?
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Arithmetic of infinities

Is there an arithmetic for cardinal numbers? Can we add and
multiply cardinal numbers?

How do we add finite cardinals?

Let X and Y be sets with an empty intersection then

](X ∪ Y ) = ](X ) + ](Y ).

Exercise

Can you prove that ℵ0 + 1 = ℵ0?
Can you prove that ℵ0 + ℵ0 = ℵ0?

Exercise

Show that if X is a finite set and A ⊂ X , then ](A) < ](X ).
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The cartesian product X × Y of two sets X and Y

X × Y = {(x , y)|x ∈ X , y ∈ Y }.

Example Let X = {1, 2, 3} and Y = {a, b}.
The set X × Y can be written as the array

(1, a), (1, b),
(2, a), (2, b),
(3, a), (3, b)


Note ](X × Y ) = ](X )× ](Y ), i.e. 6 = 3× 2 !!

Exercise What is the set X × Y ?

(i) X = {1, 2, 3, 4} and Y = {1, 2, 3};
(ii) X = N and Y = {1, 2, 3}.
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How do we multiply cardinals?

Definition: Let X and Y be sets then
](X ) x ](Y ) = ](X × Y )

](N× N) = ](N)× ](N) = ℵ0 × ℵ0 = ℵ20
Exercise. Can you prove ℵ20 = ℵ0? Here is N× N.
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Exercise Is this a way to count N× N?
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Exercise So what is the best way to count N× N?

Can you think of another way to count N× N?
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Exercise What is the cardinality of the rational numbers Q?

Can you show how the rationals can be put into a single list so as
to be counted?
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The Power set P(X ) of the set X is the set of all subsets of X

Exercise How many elements are there in P(X ) if ](X ) = n. Try
for n = 0, 1, 2, 3 . . .

The power set P(X ) is larger than the set X for finite sets

]P(X ) = 2n if ](X ) = n and 2n > n for n = 0, 1, 2, . . .

CANTOR’s THEOREM

]P(X ) > ]X for INFINITE sets too
So there are different infinities - there is, in fact
AN INFINITY of INFINITIES.
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Is ]P(N) = ]N?

Suppose there is 1-1 correspondence between N and P(N)

N←→ P(N)

1←→ {1, 2, 3}

2←→ {1, 3, 4}

3←→ {3, 4, 5}

4←→ {1, 3, 5, 7, . . . }

5←→ {3, 4}

... ←→
...

... ←→
...
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If n ∈ N corresponds with a subset of N containing n ,
e.g. 1←→ {1, 2, 3}
the integer n is called SELFISH ,

so n = 1 is SELFISH;

n = 2 is NON-SELFISH;

n = 3 is . . . , etc.;

Let D be the set of all NON-SELFISH(blue) integers from the
previous slide and let d ←→ D in the 1-1 correspondence between
N and P(N).

Is d selfish or not?

OK, so assume d is selfish - then d ←→ D and so d ∈ D, therefore
d is non-selfish. !!!!
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CONTRADICTIONS every way we go !!!

What is the way out of this?

There is NOT a 1-1 correspondence between ]P(N) and ]N
So ]P(N) > ]N and ]P(N) is a NEW infinite cardinal.
2ℵ0 = ℵ1 6= ℵ0
2ℵ1 = ℵ2 6= ℵ1
2ℵ2 = ℵ3 6= ℵ2

So why is ](R) = ℵ1? Think DECIMALS!!!!!!!
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