A QUICK INTRODUCTION TO FIBERED CATEGORIES AND
TOPOLOGICAL STACKS

BEHRANG NOOHI

ABSTRACT. This is a quick introduction to fibered categories and topological
stacks.
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1. CATEGORIES FIBERED IN GROUPOIDS

The formalism of categories fibered in groupoids provides a convenient framework
for dealing with lax groupoid-valued functors. In this section, we recall some basic
facts about categories fibered in groupoids.

We recall that a groupoid is a (small) category in which all morphisms are isomor-
phisms. A set, viewed as a category with only identity morphisms, is a groupoid.
By abuse of terminology, we sometimes use the term set for any groupoid that is
equivalent to a groupoid of this form (the correct terminology is equivalence rela-
tion).

Let T be a fixed category. An example to keep in mind is T = Top, the category
of topological spaces. A category fibered in groupoids over T is a category X
together with a functor 7: X — T satisfying the following properties:

(i) (Lifting arrows.) For every arrow f: V — U in T, and for every object X
in X such that 7(X) = U, there is an arrow F: Y — X in X such that

w(F) = f.
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(ii) (Lifting triangles.) Given a commutative triangle in T, and a partial lift
for it to X as in the diagram

there is a unique arrow H:Y — Z such that the left triangle commutes
and 7(H) = h.

We often drop the base functor 7 from the notation and denote a fibered category
m: X — T by X.

For a fixed object T' € T, let X(T") denote the category of objects X € X such
that 7(X) = T. Morphisms in X(T') are morphisms F: X — Y in X such that
m(F) =idp. It is easy to see that X(7T) is a groupoid. It is called the fiber of X over
T. We sometimes abuse terminology and call X(7T') the groupoids of T-points of X.
An object (resp., a morphism) in X(T) is called an object (resp., a morphism) over
T.

Remark 1.1.

1. Conditions (i) and (ii) imply that, for every morphism f: 7' — T in T,
every object X € X(T') has a “pull-back” f*(X) in X(7”). The pull-back is
unique up to a unique isomorphism. We sometimes denote f*(X) by X|-.

2. The pull-back functors f* (whose definition involves making some choices)
give rise to a lax groupoid-valued functor T' — X(T'). Conversely, given
a lax groupoid-valued functor on T, it is possible to construct a category
fibered in groupoids over T via the so-called Grothendieck construction.

3. A fibered category X — T whose fibers X(T') are sets gives rise to a presheaf
of sets T' — X(T'). Conversely, every presheaf of sets over T gives rise,
via the Grothendieck construction, to a category fibered in sets over T.
The conclusion is that, categories fibered in sets over T are the same as
presheaves of sets over T; see Example [[.2]2 below.

Ezxample 1.2.

1. Let T = Top, and let G be a topological group. Let BG be the category
of principal G-bundles P — T. A morphism in BG is, by definition, a
G-equivariant cartesian diagram

P — P
v '

7 — T

The base functor BG — Top is the forgetful functor that sends P — T to
T. This makes BG a category fibered in groupoids over Top. The fiber
BG(T) of BG over T is the groupoid of principal G-bundles over T
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2. Let T = Top, and let X be a topological space. Let X be the category of
continuous maps 7" — X. A morphism in X is a commutative triangle

7 —— T

N/
X

The forgetful functor that sends T'— X to T" makes X a category fibered
in groupoids over Top.

The groupoid X(7T') is in fact a set, namely, the set of continuous maps
T — X (i.e., the set of T-points of X). The functor T+ X(T) is a presheaf
(in fact, a sheaf) of sets on Top.

Remark 1.3. There are two ways of thinking of a fibered category X — T. One is to
think of it as a device for cataloguing the objects parameterized by a moduli problem
over T. In this case, an object X € X(T') is viewed as a “family parameterized by
T”

The second point of view is to think of X as some kind of a space. In this case,
an object in X(T) is simply thought of as a T-valued point of X, that is, a map
from T to X.

The Yoneda Lemma clarifies the relation between the two points of view.

1.1. The 2-category of fibered categories. Categories fibered in groupoids over
T form a 2-category. Let us explain how.

A morphism f: X — Y of fibered categories is a functor f: X — Y between
the underlying categories such that my o f = myx. Given two such morphisms
f,9: X =Y, a 2-morphism ¢: f = g between them is a natural transformation of
functors ¢ from f to g such that the composition myo is the identity transformation
from my to itself.

With morphisms and 2-morphisms as above, categories fibered in groupoids over
T form a 2-category §ibt. The 2-morphisms in Fibt are automatically invertible.
A morphism f: X — Y is called an equivalence if there exists a morphism g: Y — X
such that fog and go f are 2-isomorphic to the corresponding identity morphisms.
It is not uncommon in the literature to call two equivalent fibered categories iso-
morphic.

The construction in Example [I.2]2 can be performed in any category T and it
gives rise to a functor T — Fibt. From now on, we will use the same notation for
an object T in T and for its corresponding category fibered in groupoids. This is
justified by the following Yoneda-type lemma (also see the ensuing paragraph).

Lemma 1.4 (Yoneda lemma). Let X be a category fibered in groupoids over T, and
let T be an object in T. Then, the natural functor

HomgibT (T, :X:) — X(T)
is an equivalence of groupoids.

The functor in the above lemma is defined by sending f: T — X to the image
of the identity map id: T — T, viewed as an element in T'(T), under the map
f(0): T(T) — X(T).

This lemma implies that the functor T — §iby is fully faithful. That is, we can
think of the category T as a full subcategory of Fibt. For this reason, in the sequel
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we quite often do not distinguish between an object T" and the fibered category
associated to it.

1.2. Fiber products and inner-homs in Fibt. The 2-category Fibt is closed
under 2-fiber products and inner-homs. The 2-fiber product X xg Y is defined by
the rule

(X xz Y)(T) := X(T) xz (1) Y(T).
The latter is 2-fiber product (or homotopty fiber product) in the 2-category of
groupoids. Sometimes instead of saying 2-fiber product we simply say fiber product.

Given categories X and Y fibered over T, the inner-hom between them, denoted
Hom(Y,X), is defined by the rule

Hom(Y,X)(T') := Hom(T x Y, X).

The inner-hom has the expected exponential property. That is, given X, Y, and Z,
we have a natural equivalence of fibered categories

Hom(Z x Y,X) 2 Hom(Z,Hom(Y, X)).

1.3. Descent condition. To simplify the exposition, and to avoid the discussion
of Grothendieck topologies, we will assume from now on that T = Top, with the
Grothendieck topology being the usual open-cover topology. There is no subtlety
in generalizing the discussion to arbitrary Grothendieck topologies.

We say that a category X fibered in groupoids over T is a stack, if the following
two conditions are satisfied:

(i) (Gluing morphisms.) Given two objects X and Y in X over a fixed topolog-
ical spaces T', morphisms between them form a sheaf. That is, the presheaf
of sets on T defined by

U Homx(U)(X|U7Y|U)

is a sheaf.

(ii) (Gluing objects.) Let T be a topological space, and let {U;} be an open
cover of T. Assume that we are given objects X; € X(U;), together with
isomorphisms ¢;;: X;|v,nv;, — Xilu,nu; in X(U; N Uj) which satisfy the
cocycle condition

Pij © Pjk = Pik
on U; NU; N Uy, for every triple of indices %, j and k. Then, there is an
object X over T, together with isomorphisms ¢;: X|y, — X, such that
Yij © @i = @ , for all 4, 7.

The data given in (ii) is usually called a gluing data or a descent data. It follows
from (i) that the object X in (ii) is unique up to a unique isomorphism (respecting
Pi)-

)Stacks over T form a full sub 2-category Gty of §Fibt which is closed under fiber
products and inner-homs. Any fibered category over T which is equivalent to a
stack is itself a stack.

Example 1.5.

1. The fibered category BG of Example [I.2]1 is a stack. This is because one
can glue principal G-bundles over a fixed space T using a gluing data (and
the same thing is true for morphisms of principal G-bundles as well). The
stack BG is called the classifying stack of G.
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2. The fibered category X of Example [[.2]2 is a stack. This is because given
a collection of continuous maps f;: U; — X on an open cover {U;} of T
which are equal over the intersections U; N U;, we can uniquely glue them
to a continuous map f: T — X.

Note that the cocycle condition over triple intersections does not appear in Ex-
ample [[.5]2. The reason for this is that the fiber groupoids X(U) are equivalent
to sets. That is, if there is a morphisms between two objects in X(U), then it is
necessarily unique. In fact, the functor T +— X(T') is a sheaf of sets on Top.

Remark 1.6. A stack X over T whose fibers X(T) are sets gives rise to a sheaf
of sets T — X(T) on T. Conversely, every sheaf of sets on T gives rise, via the
Grothendieck construction, to a stack over T whose fibers are sets. The conclusion
is that, stack over T whose fibers are sets are the same as sheaves of sets on T; see

Example 2.

In view of Example 2 (and Lemma [[.4)), the descent condition for a stack
X can be interpreted as follows. Let T be a topological space, and let {U;} be an
open cover of 7. Assume we are given morphisms f;: U; — X, together with 2-
isomorphisms ¢;;: fj|v,nv;, = filv.nu, satisfying the cocycle condition ¢;; 0 ;5 =
@ir- (This should be thought of as saying that ¢;; are “identifying f; and f; along
U;NUj in a coherent way.”) Then, we can glue f; to a global morphism f: T — X
whose restriction f|y, to U; is identified to f; via a 2-isomorphism @;: fly, = fi.
Furthermore, two such f and f’ are 2-isomorphic via a unique ¥: f — f’ which
intertwines ¢; and .

1.4. The stack associated to a category fibered in groupoids. To any cat-
egory X fibered in groupoids over T there is associated a stack Xt over T called
the stackification of X. This gives rise to a 2-functor from Fibt to &Gty which is
left adjoint to the inclusion of Gty in Fibt. The construction of the stackification
functor is rather messy and we avoid giving its details here.

When restricted to categories fibered in sets (i.e., presheaves of sets), the stack-
ification functor coincides with the usual sheafification functor. This follows from
the universal property of a left adjoint.

1.5. Quotient stacks. To any topological groupoid X = [X; = Xj] one can
associate a stack [Xo/X1] called the quotient stack of X. A quick definition for the
quotient stack is as follows. We define [X(/X1] to be the stack associated to the
(fibered category associated to the) presheaf of groupoids

T — [Xu(T) = Xo(T)].

The quotient stack [Xy/X;] comes equipped with a natural quotient morphism
Xo — [Xo/X1]. The quotient morphism is an epimorphism. A morphism f: X — Y
of stacks is called an epimorphism, if it is an epimorphism in the sheaf-theoretic
sense. That is, if every base extension fr: T xy X — T of f over a topological
space T" admits local sections.

Since we have not defined the stack associated to a category fibered in groupoids,
we give an alternative description of [X(p/X1] in terms of principal bundles. We
only discuss the case when X is the action groupoid [X x G = X] of a topological
group G acting on a topological space X (for the general case see [Noll, § 12). In
this case, the quotient stack is denoted by [X/G].
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For a topological space T, the groupoid [X/G](T) of T-points of [X/G] is the
groupoid of pairs (P, ¢), where P is a principal G-bundle over T, and ¢: P — X
is a G-equivariant map. The morphisms in [X/G](T) are G-equivariant morphisms
f: P' — P such that ¢’ = po f.

It is easy to verify that [X/G] is a stack. When X is a point, the quotient stack
[*/G] coincides with BG of Example 1.

2. TOPOLOGICAL STACKS

We review some basic facts about topological stacks. More details can be found
in [Nol].

2.1. Stacks over Top. Throughout this section, by a stack we mean a stack over
the site Top of topological spaces endowed with the open-cover Grothendieck topol-
ogy. We list some basic facts about stacks.

1. The 2-category Gtrop is a full sub 2-category of Fibye,. In particular, its
2-morphisms are invertible. Thus, given two stacks X and Y, we have a
groupoid Hom(Y, X) of morphisms between them.

Although in practice one may really be interested only in the category
of stacks obtained by identifying 2-isomorphic morphisms, the 2-category
structure can not be ignored. For example, when we talk about fiber prod-
ucts of stacks, we exclusively mean the 2-fiber product in the 2-category of
stacks.

2. The 2-category Gtrop , viewed as a sub 2-category of §ibrp, is closed under
fiber products and inner-homs. In particular, we can talk about mapping
stacks Hom(Y,X). We have a natural equivalence of groupoids

Hom(Y, X)(x) = Hom(Y, X),

where * is a point.

3. The category Top of topological spaces embeds fully faithfully in Gtrop.
This means that, given two topological spaces X and Y, viewed as stacks
via the functor they represent, the hom-groupoid Hom(X,Y) is equivalent
to a set, and this set is in natural bijection with the set of continuous
functions from X to Y. This way, we can think of a topological space as a
stack.

This embedding preserves the closed cartesian structure on Top. This
means that fiber products of spaces get sent to 2-fiber products of the corre-
sponding stacks, and the mapping spaces (with the compact-open topology)
get sent to mapping stacks

4. The embedding of the Top in Styop admits a left adjoint. That is, to every
stack X one can associate a topological space X,,04, together with a natural
map 7: X — X;p0q Which is universal among maps from X to topological
spaces. (That is, every map from X to a topological space T factors uniquely
through 7.) See (|[Noll, §4.3) for more details.

The space X,,04 is called the coarse moduli space of X and can be thought
of as the “underlying space” of X.

1T be precise, the last statement is true if we restrict to the site of compactly generated
spaces.
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The underlying set of X,,,q is the set of isomorphism classes of the
groupoid X(x), where * stands for a point. In other words, the points of
Xinoaq are the 2-isomorphism classes of points of X, where by a point of X
we mean a morphism z: * — X.

5. To a point z: * — X of a stack X there is associated a group I, called the
inertia group of X at x. By definition, I, is the group of 2-isomorphisms
from the point x to itself. An element in I, is sometimes referred to as a
ghost or hidden loop; see ([Noll, §10). In the case where X is the quotient
stack of a groupoid [X; = Xj], the stabilizer group of a point x in X is
isomorphic to the stabilizer group of a lift z € X of z.

The groups I, assemble into a stack JX — X over X called the inertia
stack. The inertia stack is defined by the following 2-fiber square

I —X

Lk

X——XAxX
A

The map JX — X is representable in the sense of and makes JX into a
group stack over X.

2.2. Representable morphisms of stacks. A morphism f: X — Y of stacks is
called representable if for every map T' — Y from a topological space T', the fiber
product T" xy X is a topological space. Roughly speaking, this is saying that the
fibers of f are topological spaces.

Any property P of morphisms of topological spaces which is invariant under base
change can be defined for an arbitrary representable morphism of stacks. More
precisely, we say that a representable morphism f: X — Y is P, if for every map
T — Y from a topological space T, the base extension fr: T xy X — T is P as a
map of topological spaces; see ([Noll, §4.1).

This way we can talk about embeddings (closed, open, locally closed, or arbitrary)
of stacks, proper morphisms, finite morphisms, and so on.

2.3. Topological stacks. A topological stack ([Nol], Definition 7.1) is a stack X
over Top which admits a representable epimorphism p: X — X from a topological
space X E| Such a morphism is called an atlas for X. It follows that every morphism
T — X from a topological space T to a topological stack is representable ([Nol],
Corollary 7.3).

Every quotient stack [Xo/X1] of a topological groupoid is a topological stack,
and the quotient map Xy — [X(/X1] is an atlas for it. Conversely, given an atlas
X — X for a topological stack X, X is equivalent to the quotient stack of the
topological groupoid [pry,pry: X xo X = X]|.

We list some basic facts about topological stacks.

1. Topological stacks form a full sub 2-category of Gtrop.

2. The 2-category TopGStr,, of topological stacks is closed under fiber prod-
ucts. It, however, does not seem to be closed under inner-homs. That is, it
does not seem to be the case in general that the mapping stack Hom(Y, X)
of two topological stacks X and Y is a topological stack. This is the case,

2We use a different terminology here than [Nol]. What we call a topological stack here is called
pretopological in [ibid.].
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however, if Y is the quotient stack of a groupoid [Y; = Y] such that Yj
and Y7 are compact topological spaces ([No3|, Theorem 4.2). If Yy and
Y7 are only locally compact, the mapping stack Hom(Y,X) (which we do
not know if it is topological anymore) still admits a classifying space in the
sense of (The be precise, for these results to be true one needs to
restrict to the site of compactly generated topological spaces.)

3. Let X = [Xo/X1] be the quotient stack of a topological groupoid [X; = Xj].
Then, the coarse moduli space of X is naturally homeomorphic to the coarse
quotient space of the groupoid [X; = Xy]. In particular, the coarse moduli
space of the quotient stack [X/G] is the orbit space X/G of the action of
G on X. The coarse moduli space of the classifying stack [*/G] of G is just
a single point.

4. For a point x: * — X of a topological stack X, the inertia group I, is
naturally a topological group. The inertia stack JX is a topological stack,
and the natural map JX — X is representable. It makes JX a group stack
over X.

2.4. Examples of topological stacks. There are several general classes of topo-
logical stacks.

1. Topological spaces. The category of topological spaces is a full sub 2-
category of the TopSty,,. Therefore, every topological space X can be
regarded as a topological stack. Its coarse moduli space, as well as its iner-
tia stack, are equal to X itself. In particular, the inertia group I, of every
point x on X is trivial. It is not true in general that a topological stack
whose inertia groups are all trivial is a topological space.

2. Orbifolds. Every orbifold X is a topological stack which is locally isomorphic
to a stack of the form [U/G], with G a finite group acting on a manifold
U. The coarse moduli space of X is the underlying topological space of X
(so, locally it is U/G). The inertia group of a point z is the orbifold group
(or the stabilizer group) of x. The inertia stack of X is the stack of twisted
sectors of X.

3. Complexes-of-groups. Every complex-of-group X gives rise naturally to a
topological stack (which we denote again by DC)E| The stack X is locally of
the form U/G, where U is a polyhedral complex and G is a finite group
acting on U preserving the polyhedral structure. The coarse moduli space
of X is the underlying topological space of X. The inertia group of a point
x on X is isomorphic to the group attached to the lowest dimensional cell
containing x. The inertia stack of X is again a complex-of-groups.

4. Artin stacks over C. To any Artin stacks X of finite type over C one can
associate a natural topological stack X*°P ([Nol], §20). The coarse moduli
space of X*°P is the underlying topological space of the coarse moduli space
of X (if it exists). The inertia group of a point z in X*°P is the underlying
group of the algebraic inertia group of x. The inertia stack of X!°P is the
underlying topological stack of the algebraic inertia stack of X, that is,
(J0)top,

5. Foliated manifolds. To a foliated manifold (M,JF) we can associate two
leaf stacks. Onme, let us denote it by [M/F],, is the quotient stack of the

3The case of graphs-of-groups is discussed in [Noll, §19.5
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holonomy groupoid of the foliation (this is a Lie groupoid). The other,
[M/F),,, is the quotient stack of the monodromy groupoid of the foliation
(this is also a Lie groupoid). The coarse moduli spaces of both [M/J],
and [M/F),, are equal to the (naive) leaf space M/F of the foliation. The
inertia group at a point of [M/J]; is isomorphic to the holonomy group
of the corresponding leaf in M. The inertia group at a point of [M/F],,
is isomorphic to the fundamental group of the corresponding leaf in M.
There is a natural morphism of stacks [M/F],, — [M/F], which induces
the identity map on the coarse moduli spaces. The induced map on the
inertia groups at a given point is the surjection map from the monodromy
group to the holonomy group of the corresponding leaf.

I do not have a clear understanding of the structure nor the significance
of the inertia stacks of either of these stacks.

6. Gerbes. Let G be a topological group, and let X be a G-gerbe over a
topological space X. Then, X is a topological stack which is locally (on X)
isomorphic (non-canonically) to U x BG. The coarse moduli space of X is
X and the inertia group at every point of X is (non-canonically) isomorphic
to G. The inertia stack of X is in general no longer a gerbe on X. (For a
description of the inertia stack of BG see [Nol], Corollary 19.20.)

2.5. Classifying space of a topological stack. Let X be a stack over Top. By a
classifying space for X we mean a topological space X together with a morphism
@: X — X of stacks such that ¢ is a universal weak equivalence. The latter means
that, for every morphisms T' — X from a topological space T, the base extension
or: T Xy X — T is a weak homotopy equivalence of topological spaces.

Theorem 2.1 ([No2|, Theorem 6.2). Every topological stack X admits a classifying
space.

The classifying space X is unique up to a weak equivalence over X (which is itself
unique up to weak equivalence). In particular, X calculates the weak homotopy
type of X. The significance of the map ¢: X — X is that it allows one to transport
homotopy theoretic data from X to X.

Ezample 2.2. In the case where X = [X/G] is the quotient stack of a topological
group action, the Borel construction X xg EG is a classifying space for X.

Remark 2.3. The classifying space ¢: X — X constructed in [No2|, Theorem 6.2
has the stronger property than being a universal weak equivalence: whenever T is
paracompact, the map pr: T X X — T admits a section and a fiberwise defor-
mation retraction of 7" Xy X onto the image of that section.
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