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1. introduction

Stacks were introduced by Grothendieck to provide a general framework for
studying local-global phenomena in mathematics. In this sense, the theory of stacks
generalizes sheaf theory of Serre and Cartan. The early stages of the development
of the theory can be traced in the Ph.D thesis of Grothendieck’s student Giraud on
non-abelian cohomology [Gi]. Not long after their introduction, stacks were used
by Deligne and Mumford [DeMu] in a rather different context, namely, in the study
of moduli of algebraic curves. In this work, among other fundamental contribu-
tions, Deligne and Mumford proved that the moduli problem in question gives rise
to what is today called a Deligne-Mumford stack, and they used this fact to prove
irreducibility properties of certain moduli spaces of curves. Later, M. Artin [Ar]
generalized Deligne-Mumford’s work by introducing Artin stacks, which have ever
since proved to be a vital tool in algebraic geometry, especially in the study of
moduli problems, and also in the study of quotient spaces.

Every scheme is a Deligne-Mumford stack, and every Deligne-Mumford stack
is an Artin stack. There are also other variants of these notions which go by the
generic name of algebraic stacks.

In a nutshell, algebraic stacks are a new breed of spaces for algebraic geometers
to work with, providing them with greater flexibility for performing constructions
hitherto impossible in the category of schemes, while being manageable enough to
allow the entire machinery of scheme theory to be applicable to them.

After the great success of the theory of algebraic stacks, and their wide appli-
cation (say, in arithmetic geometry, mathematical physics, stable homotopy the-
ory,...), it was most natural to have parallel theories in other areas of mathematics
in which there is a notion of space involved. To name a few, analytic stacks in
the context of analytic geometry, differentiable stacks in the context of geometry of
manifolds, topological stacks in the context of topology, and so on. Some of these
theories have been (partly) developed.

Topological stacks, which had already been heuristically used (without even hav-
ing been defined!) by some authors, were introduced in [No]. In loc. cit. it is shown
that the usual homotopy theory of topological spaces can be extended to topolog-
ical stacks. So, for instance, we can talk about homotopy groups of a topological
stack.

Topological stacks provide a suitable framework for studying equivariant theories
in topology. Also, they incorporate large classes of already well-known objects such
as orbifolds [Th] and graph of groups [Se] (more generally, complexes of groups
[Ha]), giving a unified perspective to these theories, as well as enabling one to
apply homotopical methods in studying them. Also, every algebraic stack (defined
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over complex numbers) has an“underlying topological stack”. This enables us to
talk about topological invariants of algebraic stacks.

In this note we discuss certain features of the theory of topological stacks.

2. Topological stacks

We begin with the following not-so-illuminating definition. The reader unfamiliar
with stack theory jargon may want to skip this definition and the paragraph that
comes after it. A quick reading through would not be too harmful though!

Definition 2.1. A topological stack X is a stack on the site of topological spaces
satisfying the following conditions:

1. The diagonal X → X × X is representable.
2. There exists a topological space X and an epimorphism p : X → X which

is representable by local Serre fibrations.

Let us say a few words about the above definition. By a local Serre fibration

f : X → Y between topological spaces we mean a continuous map for which there
exist coverings X = ∪i∈IUi and Y = ∪i∈IVi such that for each i ∈ I, f |Ui

factors
through Vi and induces a Serre fibration fi : Ui → Vi. This notion is local on the
target and is invariant under base change, so it can be extended to representable
morphisms of stacks. In particular, since in the presence of condition (1) the map p
of (2) is representable, we can talk about p being a local Serre fibration. Therefore,
the above definition makes sense!

Of course for a reader not previously exposed to the notion of a stack, the above
definition and the discussion afterwards wouldn’t make much sense. For this reason,
for the rest of this exposition we will set aside the official definition of a topological
stack and take a more informal approach.

What is essential to come to terms with is the fact that, with some extra care,
one could do with topological stacks pretty much everything that can be done with
usual topological spaces. For instance, we can talk about properties of morphisms
of topological stacks such as being open, closed, proper, an embedding, a Serre

fibration, a covering space, and so on. The point is that all these properties are
invariant under base extension and are local on the target. So, we can define a
representable morphism f : X → Y of topological stacks to have property P, if its
base extension fY : Y ×Y X → Y along any morphism Y → Y, with Y now being a
topological space, has the property P.

In particular, we can talk about substacks (respectively, open substacks, closed
substacks) of a topological stack.

A topological space is naturally a topological stack. This can be expressed more
precisely as a Yoneda type statement which asserts that the category of topological
spaces can be identified with a full subcategory of the category of topological stacks.
In particular, we can talk about homotopy groups of a topological stack. For
instance, π1(X, x) is defined to be the set [(S1, ∗), (X, x)]∗ of pointed homotopy
classes of maps from the circle S1 to X. It can be shown that π1(X, x) has a group
structure and is functorial. (Of course, for this to make sense we need to have a
notion of homotopy between maps of topological stacks. This can be done, but we
will omit the definition here.)

A main class of examples of topological stacks are obtained as follows. Let G be
a topological group acting continuously on a topological space X. To this action
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we associate what is called the quotient stack of this action, and is denoted by
[X/G]. This should not be confused with the quotient space X/G we are famil-
iar with from topology. The quotient stack [X/G] is better behaved than X/G
and retains much more information about the action than the ordinary quotient
X/G. This is especially the case when the action has fixed points or misbehaving
orbits. For instance, [X/G] in some sense remembers all the stabilizer groups of
the action, while X/G is completely blind to them. There is a natural morphism
πmod : [X/G] → X/G enabling us to compare the stacky quotient [X/G] with the
coarse quotient X/G. We will encounter πmod again later in this note.

We can produce a whole lot of new topological stacks by gluing quotient stacks
along their open substacks (the same way we produce manifolds by gluing copies of
Rn along their open subspaces). Let us tentatively call such stacks locally quotient

stacks. A special case of interest is when the group G is discrete and the action is
properly discontinuous. Such locally quotient stacks are called Deligne-Mumford

topological stacks and are of great importance. We say that a topological stack is
uniformizable if it is of the form [X/G] where G is a discrete group acting properly
discontinuously on a topological space X. So every Deligne-Mumford topological
stack is locally uniformizable. There are examples of Deligne-Mumford topological
stacks that are not globally uniformizable.

It is an easy exercise to show that any orbifold or any graph of groups (or more
generally, any complex of groups) gives rise to a Deligne-Mumford topological stack.

For the sake of simplicity, for the rest of this note we restrict ourselves to locally
quotient stacks.

Let us try to give an intuitive picture of what goes into the structure of a topologi-
cal stack. Every topological stack X has an underlying topological space, sometimes
called the coarse moduli space, which we denote by Xmod. There is a natural
functorial map πmod : X → Xmod, called the moduli map. Loosely speaking, Xmod is
the best approximation of X by a topological space. When X = [X/G] is a quotient
stack, Xmod is simply the coarse quotient X/G.

A striking feature of topological stacks, which makes them adaptable to ap-
plications, and partly justifies their importance, is the following. Assume that
X = [X/G] is a quotient stack. Then there is a natural quotient map q : X → [X/G],
and this map, no mater how pathological the action is, makes X a principal G-
bundle over [X/G]. So, in particular, q : X → [X/G] is a Serre fibration. The usual
quotient map we know from topology is obtained as the composition πmod ◦q. Note
that the latter can be an extremely badly behaved map (think of the translation
action of Q on R).

Now, consider a topological group G acting trivially on a point! The quotient
stack [∗/G] of this action is called the classifying stack of G, and is denoted by
BG. Observe that (BG)mod is just a point. However, BG is far from being a
trivial object. More precisely, the quotient map ∗ → BG makes ∗ into a principal
G-bundle over BG, and this principal G-bundle is universal in the following sense:
for every topological space T , the equivalence classes1 of morphisms T → BG are
in bijection with the isomorphism classes of principal G-bundles over T .

If in the above situation G is a discrete group, the quotient map ∗ → BG becomes
the universal cover of BG. This implies that π1BG ∼= G.

1Maps between two given stacks naturally form a groupoid. By an equivalence class we simply

mean an isomorphism class in this groupoid.
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Example 2.2. Consider the rotation action of the cyclic group Zn on the sphere
S2 which fixes north and south poles. The quotient stack X = [S2/Zn] has an
underlying space which is homeomorphic to a sphere. However, X remembers the
stabilizer groups at the two fixed points. Namely, at the north and south pole, X

looks like BZn. Outside these two stacky points, X is just like the sphere. We have
π1X ∼= Zn. The higher homotopy groups of X are isomorphic to those of S2.

Example 2.3. Let X be the graph

•

• • •

•

and consider the action of the group G = Z2×Z2 on X in which the two generators
act by flipping along the horizontal axis and 180 degree rotation, respectively. The
quotient stack X of this action looks like this:

•Z2

1

• Z2

Z2

•
Z2×Z2

The decoration of the graph indicates that the quotient stack remembers the stabi-
lizer group at each point. The coarse moduli stack of this action is the same graph
(with the decoration deleted). The fact that X is a covering space of X gives us
the following short exact sequence:

1 → Z ∗ Z → π1X → Z2 × Z2 → 1.

In fact, π1X is isomorphic to the semi-direct product

(Z ∗ Z) o (Z2 × Z2)

where the (1, 0) ∈ Z2×Z2 acts on Z∗Z by switching the factors, and (0, 1) ∈ Z2×Z2

acts trivially. Alternatively, if we use van Kampen we obtain

π1X ∼= Z2 ∗ (Z2 × Z2).

As an easy exercise in group theory, the reader can verify directly that this group
is isomorphic to the previous one.

The higher homotopy groups of X are trivial.

The above examples suggest a rough way of visualizing a topological stack X.
Namely, we can think of X as a topological space (that would be Xmod) which at
every point x is decorated with a (topological) group Ix. The group Ix is called
the stabilizer (or inertia) group at x. These inertia groups are intertwined in an
intricate way along Xmod. When X is a Deligne-Mumford topological stack, all Ix

are discrete.
As we already pointed out, given a topological stack X and a point x on it,

we can define a fundamental group π1(X, x), which is functorial with respect to
pointed maps. On the other hand, at every point x on X, we have a pointed map
(BIx, x) → (X, x). This induces a group homomorphism π1 : π1(BIx, x) → π1(X, x).
Assume now that X is Deligne-Mumford (hence Ix are discrete). Recall that, in this
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case we have π1(BIx, x) ∼= Ix. So we get canonically-defined group homomorphisms
ωx : Ix → π1(X, x).

We have the following theorem.

Theorem 2.4. Let X be a Deligne-Mumford topological stack. Then X is uniformiz-

able if and only if for every point x on X the homomorphism ωx : Ix → π1(X, x) is

injective.

The significance of the above result is that the maps ωx are usually very easy to
compute.

As a simple application of the above theorem let us see in an example how we
can determine if a given orbifold is a good orbifold (in the sense of Thurston). That
is, whether it is uniformizable.

Example 2.5. Fix a positive integer n. Let X be a stack whose underlying space is
a torus and has a unique orbifold point of order n. Is this a good orbifold? To find
the answer, first we compute the fundamental group of X using van Kampen. We
obtain the following:

π1X ∼=< a, b, c | aba−1b−1 = c, cn = 1 > .

There is only one orbifold point on X, and the corresponding inertia group at this
point is Zn. By Theorem 2.4, X is a good orbifold if and only if the map

Zn → π1X

1 7→ c

is injective. Equivalently, we have to verify that the subgroup of π1X generated by
c is of order n. To do so, we show that there is a finite quotient H of π1X such that
the image of c in H has order n. We construct H as follows. Consider the action
of Zn on Zn ⊕ Zn where the action of the generator 1 ∈ Zn is given by the matrix

(

1 1
0 1

)

.

The semi-direct product (Zn⊕Zn)oZn, the Heisenberg group over Zn, is made into
a quotient of π1X by sending a,b and c to (0, 0, 1), (0, 1, 0) and (1, 0, 0), respectively.
It is easy to check that this quotient has the desired property. In fact, using a more
refined version of Theorem 2.4, this argument implies that there exists a compact
surface X with a continuous action of H such that X ∼= [X/H].

One can show that, in the above example X is the quotient of the upper half
plane H by the action of a discrete subgroup of PSL(2, R).
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