
PICARD STACK OF A WEIGHTED PROJECTIVE STACK

BEHRANG NOOHI

Abstract. We prove that the Picard stack of a weighted projective stack over

an arbitrary base scheme S is naturally isomorphic to Z×BGm,S

1. Introduction

The purpose of this note is to prove the following result.

Theorem 1.1. Let S be an arbitrary base scheme. Then, there is a natural iso-
morphism of stacks over S

Z×BGm
∼= Pic

(

PS(n0, n1, · · · , nr)
)

,

where the left hand side means disjoint union of Z copies of the classifying stack of
Gm,S.

We present two proofs for this result. The first proof is completely elementary,
but rather long. It occupies Section 2 to Section 5. The second proof (Section 6),
which is essentially due to Angelo Vistoli, is a standard application of the (stack
version of) Grothendieck’s base change theorems.
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2. Some elementary facts

In this section we prove a few lemmas which will be used in the course of the
proof of the main theorem.

Lemma 2.1. Let S be a scheme, and r a positive integer. Let X = A
r+1
S be the

affine space over S, and U = A
r+1
S −{0} the complement of the zero section. Denote

the base map X → S by p, the inclusion U ↪→ X by j, and the base map U → S by
q = p ◦ j.

i. If S is normal, then p∗ : PicS → PicX is an isomorphism.
ii. If S is normal, then q∗ : PicS → PicU is an isomorphism.
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iii. Suppose S = SpecK[ε]/(ε2), where K is a field. Then, PicX is trivial.
The same is true for PicU if r 6= 1. (See Lemma 2.3 for the case r = 1.)

Proof of (i). Let Cl stand for the divisor class group. We will make use of the
fact that, for any integral scheme Y , the natural map Pic(Y )→ Cl(Y ) is injective.
(This is an easy consequence of Krull Hauptidealsatz).

Let σ : S → X be a section for p, say given by x0 = · · · = xr = 1. We claim
that σ∗ and p∗ are inverse isomorphisms between Pic(X) and Pic(S). We know this
is true in the case of class groups ([3], II. Proposition 6.6). In the case of Picard
groups, the equality σ∗ ◦ p∗ = id is obvious. The other equality follows from the
following commutative diagram:

Pic(X)
σ∗

Pic(S)
p∗

Pic(X)

Cl(X)

id

σ∗

Cl(S)
p∗

Cl(X)

Proof of (ii). We show that the natural map j∗ : Cl(X)→ Cl(U) is an isomorphism.
When r ≥ 1, this follows from ([3], II. Proposition 6.5.b). When r = 0, we know
by ([3], II. Proposition 6.5.c) that j∗ is surjective, and that its kernel is generated
by the image of the divisor Z : x0 = 0. But this divisor is trivial, so j∗ is an
isomorphism. To prove (ii) we can now simply repeat the argument of Part (i),
with X replaced by U .

Proof of (iii). Let X ′ = Xred, that is X ′ = SpecK[x1, · · · , xr]. Similarly, set
U ′ = Ured = X ′ − {0}. We will use the isomorphisms H1(X ′,OX′) ∼= PicX
and H1(U ′,OU ′) ∼= PicU . For instance, in the latter case, this isomorphism can
be realized as follows. Consider the standard covering U = ∪r

i=0Ui, where Ui =
SpecR[x0, · · · , xr, x

−1
i ]. Let {fi} be a Čech 1-cocycle relative to this covering with

values in OU ′ . Then, the 1-cocycle with values in O∗
U defined by {1+ fiε} gives the

corresponding line bundle on U .
Since X ′ is affine and OX′ is quasi-coherent, we have H1(X ′,OX′) = 0, so PicX

is trivial. Same is true for U when r = 0, because in this case U is affine. We now
compute H1(U ′,OU ′), for r ≥ 2, using the Čech complex associated to the covering
U = ∪r

i=0Ui. This complex looks as follows:
�

i

K[x0, · · · , xr, x
−1

i ] →
�

i<j

K[x0, · · · , xr, x
−1

i , x
−1

j ] →

→

�

i<j<k

K[x0, · · · , xr, x
−1

i , x
−1

j , x
−1

k ] → · · ·

Writing out the cocycle condition for triple intersections Ui ∩ Uj ∩ Uk, and using
the fact that r ≥ 2, we see that a 1-cocyle in this complex is necessarily of the form
{fi,j − gi + gj}i<j , where fi,j ∈ K[x0, · · · , xr], and gi ∈ K[x0, · · · , xr, x

−1
i ] has the

property that all of its monomials contain negative powers of xi. This 1-cocycle
is equal to the boundary of the 0-chain {hi = f1,i + gi}i, where f1,1 := 0. Thus,
PicU = H1(U ′,OU ′) is trivial. �
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Remark 2.2. Lemma 2.1.i and ii hold even if S is not normal. All we need is S be
integral. The reason for assuming normal is to make life easier by quoting ([3], II.
Proposition 6.6). The point is that, condition (∗) of loc. cit. is often redundant in
the treatment of Weil divisors. For instance, for every f ∈ R, where R is a domain
(that is not necessarily regular of codimension one), div(f) can be defined by

div(f) =
∑

ht p=1

lp(f) · Yp,

where, by definition, lp(f) is the length of the Rp-module Rp/(f), and Yp is the
prime divisor corresponding to p. This definition has all the expected properties,
and so does the corresponding notion of Weil divisor class group. With this defin-
ition of divisor class group, Proposition II.6.6 of [3], which is all we needed in the
proof of Lemma 2.1, is true (with the same proof) for any integral scheme X.

Lemma 2.3. Let K be a field, R = K[ε]/(ε2), and S = SpecR. Let U = A
2
S−{0},

and let U = Ux∪Uy be the standard covering of U . Namely, Ux = SpecK[x, y, x−1]
and Uy = SpecK[x, y, y−1]. Let V be the k-vector space spanned by the monomials
{xiyj | i, j < 0}. For each f ∈ V , let Lf be the line bundle over U given by gluing
the trivial line bundles over Ux and Uy along Ux ∪ Uy = SpecK[x, y, x−1, y−1] by
the function 1+ εf ∈ R[x, y, x−1, y−1]×. Then, the correspondence f 7→ Lf induces
an isomorphism V ∼−→ PicU .

Proof. Use the Čech complex appearing in the proof of Lemma 2.1.iii. �

Exercise. Notation being as in Lemma 2.3, let s, t ∈ K be constants, with t 6= 0,
and let m,n be arbitrary positive integers. Consider the automorphism ϕ : U → U

x→ (t+ εs)mx, y 7→ (t+ εs)ny.

Prove that, for every f ∈ V , we have ϕ∗(Lf ) = Lϕ∗f , where ϕ∗f is defined by
ϕ∗f(x, y) := f(tmx, tny).

3. Line bundles on weighted projective stacks

Let S = SpecR be an affine scheme, and let Gm = Gm,S = SpecR[t, t−1] be
the multiplicative group scheme over S. Let U := A

r+1 − {0}, r ≥ 1. Given a
sequence of positive integers n0, n1, · · · , nr we define the weight (n0, n1, · · · , nr)
action Gm × U → U of Gm on U by the ring homomorphism

R[x0, · · · , xr]→ R[t, t−1, x0, · · · , xr],

xi 7→ tmixi.

In other words, t acts by multiplication by (tn0 , tn1 , · · · , tnr ).
The quotient stack of this action is called the weighted projective stack over S of

weight (n0, n1, · · · , nr), and is denoted by PS(n0, n1, · · · , nr) or PR(n0, n1, · · · , nr).
Since this construction is local on S, we can talk about weighted projective stacks
over an arbitrary base scheme S. (Equivalently, we can define PS(n0, n1, · · · , nr)
by pulling back PZ(n0, n1, · · · , nr) along S → Spec Z.)

To give a line bundle on PS(n0, n1, · · · , nr) is the same as to give a Gm-equivariant
line bundle on U . Recall that, a Gm-equivariant line bundle on U means a line bun-
dle L on U , together with an isomorphism ϕ : pr∗L→ µ∗L, where pr, µ : Gm×U →
U are the projection and the multiplication morphisms, respectively. We require
that ϕ satisfies the obvious cocycle condition on Gm ×Gm × U .
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Suppose that S = SpecR, where R is a normal domain, or R = K[ε]/(ε2). By
Lemma 2.1 every line bundle over U is trivial . Therefore, in this case, to give
a line bundle over PR(n0, n1, · · · , nr) is equivalent to giving an invertible element
f(t, x0, · · · , xr) ∈ R[t, t−1, x0, · · · , xr]

× which satisfies the following cocycle condi-
tion:

f(ts, x0, · · · , xr) = f(s, tm0x0, · · · , t
mrxr)f(t, x0, · · · , xr).

Such an f gives rise to the trivial line bundle if it is a coboundary. Namely, if there
exists h ∈ R[x0, · · · , xr]

× such that

f(t, x0, · · · , xr) = h(tm0x0, · · · , t
mrxr)h(x0, · · · , xr)

−1.

(Note that, when R is an integral domain, this means h = a for some unit a ∈ R×.
In particular, if two cocycle differ by a coboundary, they should actually be equal.)

In fact, we have been slightly sloppy in the above discussion, because, a priori,
f is a function on A

r+1
R −{0} and it is not guaranteed to be a polynomial. But the

following Hartogs like lemma validates our argument.

Lemma 3.1. Let R be an arbitrary ring and f a global section of the structure
sheaf of U = A

r+1
R − {0}. If r ≥ 1, then f extends uniquely to a global section of

A
r+1
R .

Proof. Let Ui = SpecR[x0, · · · , xr, x
−1
i ] and consider the covering U = ∪n

i=1Ui.
We show that the restrictions fi := f |Ui

are polynomials for every i. To see this,
observe that, except possibly for xi, all variables occur with positive powers in fi.
To show that xi also occurs with a positive power, pick some j 6= i and use the fact
that xi occurs with a positive power in fj |Ui∩Uj

= fi|Ui∩Uj
.

So, all fi actually lie in R[x0, · · · , xr, x
−1
i ]. Since fj |Ui

= fi|Uj
, it is obvious that

all fi are actually equal to each other and provide the desired extension of f to
A

r+1
R . �

For any fixed integer d ∈ Z, the polynomial

fd(t, x1, · · · , xr) = td

satisfies the above cocycle condition. The corresponding line bundle is denoted by
O(d). The map d 7→ O(d) gives rise a group homomorphism

Z→ Pic
(

PR(n0, n1, · · · , nr)
)

.

In the case where R is a field, it is a well-known fact that this is an isomorphism. It
follows from the main theorem of this paper that this is indeed true for an arbitrary
local ring R. In the next lemma we prove a special case where R is normal.

Lemma 3.2. Assume R is a normal local domain. Then any line bundle L over
PS(n0, n1, · · · , nr) is isomorphic to O(d) for some d ∈ Z.

Proof. Since every line bundle on A
r+1
R − {0} is trivial (Lemma 2.1.ii), L can be

described by a cocycle f(t, x0, · · · , xr) ∈ R[t, t−1, x0, · · · , xr]. That is,

f(ts, x0, · · · , xr) = f(s, tm0x0, · · · , t
mrxr)f(t, x0, · · · , xr).

We can write f = tdg, where d ∈ Z and g ∈ R[t, x0, · · · , xr] is a polynomial that is
not divisible by t. Since g also satisfies the cocycle condition, by substituting s = 0
in the cocycle condition and observing that the left hand side does not involve t,
we see that g must be a constant polynomial. Of course, by the cocycle condition,
the only choice for this constant is 1. Therefore, f(t, x1, · · · , xr) = td. �



PICARD STACK OF A WEIGHTED PROJECTIVE STACK 5

4. Statement of the main result

For an arbitrary algebraic stack X over S, the Picard stack Pic(X) is the stack
defined by associating to any T → S the groupoid of line bundles (and isomorphisms
between them) on XT = T ×S X. By decent theory, this is always a stack over S.
When X is nice enough, it is indeed an algebraic stack.

Theorem 4.1 ([1], Theorem 5.1). Assume S is an affine scheme over an excellent
Dedekind domain. If X is proper and flat over S, then Pic(X) is an algebraic stack.

Picard stack is functorial, in the sense that Pic(XT ) = T × Pic(X). Our goal is
to study Pic

(

PS(n0, n1, · · · , nr)
)

. We prove the following theorem

Theorem 4.2. Let S be an arbitrary base scheme. Then, there is a natural iso-
morphism of stacks over S

Z×BGm,S
∼= Pic

(

PS(n0, n1, · · · , nr)
)

,

where the left hand side means disjoint union of Z copies of the classifying stack of
Gm,S.

Corollary 4.3. A line bundle L on PS(n0, n1, · · · , nr) is isomorphic to a line
bundle of the form f∗(M) ⊗ O(d) for some d ∈ Z, and a line bundle M on S,
where f : PS(n0, n1, · · · , nr) → S is the projection map. Furthermore, d and the
isomorphism class of M are uniquely determined by L.

Corollary 4.4. Let S = SpecR, where R is an arbitrary local ring. Then any line
bundle on PS(n0, n1, · · · , nr) is isomorphic to O(d) for some d ∈ Z.

5. Proof of the main theorem

Fix a base scheme S. Throughout this section we denote Pic
(

PS(n0, n1, · · · , nr)
)

by P. Observe that, since Pic
(

PS(n0, n1, · · · , nr)
)

∼= S × Pic
(

PZ(n0, n1, · · · , nr)
)

,
this is representable by an algebraic stack (Theorem 4.1).

Lemma 5.1. Assume S is connected. Let L be a line bundle on PS(n0, n1, · · · , nr).
Then, for any point y : Spec k → S, the restriction Lk of L to Pk(n0, n1, · · · , nr)
is isomorphic to O(d), for some integer d that is independent of y.

Proof. We may assume S = SpecR is affine. Also, since every line bundle is defined
by finite data, we can find a finitely generated subring of R over which L is defined.
So we may assume R is Noetherian. By replacing S with Sred we may assume S is
reduced. Since it is enough to prove the statement for each irreducible component
of S we may also assume that S is integral. Since the normalization of S surjects
onto S we may assume S is normal. Finally, it is enough to prove the result for
every local ring Ox, x ∈ S. So we may further assume that R is local. The result
now follows from Lemma 3.2. �

The above lemma shows that we have a decomposition P =
∐

d∈Z
Pd. Let P be

the fppf sheaf on SchS associated to the presheaf

V 7→ {isomorphism classes in P(V )}.

This is what is called the ‘S-espace grossier’ associated to P in [5]. Then, we have
a decomposition P =

∐

d∈Z
Pd, where each Pd is a subsheaf of P .

For any ring R, the global sections of PR(n0, n1, · · · , nr) are precisely R. This
is easy to show, because such global sections are precisely the global sections of
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A
r
R which are Gm-invariant. Therefore, we see that, for any integer d, the group

of automorphisms of O(d) on PR(n0, n1, · · · , nr) is R×. This implies that P is a
Gm-gerbe over P , and for each d ∈ Z, Pd is a Gm-gerbe over Pd.

Proposition 5.2. For every d ∈ Z the natural map Pd → S is an isomorphism
and Pd is a neutral Gm-gerbe over Pd.

Before giving the proof of the above proposition, let us note that the main result
of the paper is an easy consequence

Theorem 5.3. Let S be an arbitrary base scheme. The natural morphism

Ψ: Z×BGm
∼−→ Pic

(

PS(n0, n1, · · · , nr)
)

which on the d-the component is given by the line bundle O(d) is an isomorphism
of stacks over S.

The morphisms Ψ in the above theorem can be interpreted as follows. For
any scheme T over S, a T -point of the left hand side corresponds, by definition,
to a pair (d,M), where d in an integer and M is a line bundle over T . Then,
Ψ sends this to the T -point of Pic

(

PT (n0, n1, · · · , nr)
)

corresponding to the line
bundle f∗(M)⊗O(d) on PT (n0, n1, · · · , nr). Using this interpretation Corollary 4.3
follows immediately.

To prove Proposition 5.2 we need a couple of lemmas.

Lemma 5.4. For every d ∈ Z, the sheaf Pd is representable by an algebraic space
and f : Pd → S is separated and locally of finite presentation.

Proof. Representability by an algebraic space follows from Corollaire 10.8 of [5] be-
cause for every scheme U , the group scheme Gm,U is flat and of finite presentation
over U . Separatedness of f follows from valuative criterion for separatedness, be-
cause f f induces a bijection on T -valued points whenever T is normal (use Lemma
3.2).

So all we need to show is that Pd is of locally of finite presentations. That is, we
have to show that, for very projective system {Ui}i∈I of affine schemes (over S),
the natural map

lim
−→

Pd(Ui) = Pd(lim←−
Ui)

is a bijection. This follows from the fact that, for any affine U , a line bundle over
PU (n0, n1, · · · , nr) can be given by a 1-cocyle relative to the standard covering
of PU (n0, n1, · · · , nr) by affine patches (and so there are only finitely many data
involved). �

Lemma 5.5. Let f : X → S be a morphism of scheme. Assume f is locally of finite
type, is bijective, and admits a section. Also, assume the fibers of f are reduced.
Then f is an isomorphism. The same statement is true if X is an algebraic space
and f is separated.

Proof. We may assume S is a scheme. Let x ∈ X be an arbitrary point. We
prove that the induced map of local rings f ∗

x : Of(x) → Ox is an isomorphism. Let
A = Of(x) and B = Ox, and let m ⊂ A be the maximal ideal of A. Then, B is
an A algebra and, by assumption, the natural map A → B admits a right inverse
g : B → A. Let I := ker g be the corresponding ideal in B. The assumption that
f is bijective, implies that A → B induces a bijection on the set of prime ideals
(and the inverse is provided by g). Therefore, I is a nilpotent ideal. On the other
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hand, we have a natural decomposition B = A ⊕ I as A-modules. The fact that
f has reduced fibers implies that M/mB = R/m ⊕ I/mI is reduced. Therefore,
I/mI = 0. So, if we prove that I is finitely generated, it follows from Nakayama’s
lemma that I = 0, which is what we want to prove.

To prove that I is finitely generated, note that B is of finite type over A. Let
{ai + ti} be a finite generating set, where ai ∈ A and ti ∈ I. Let T be the set of all
monomials in {ti}. Then T generates I as an A-module. Finally, observe that T is
finite because I is nilpotent.

To prove the second statement, note that f is quasi-finite, locally of finite pre-
sentation and separated. Therefore, by ([4], II. Corollary 6.16), X is a scheme. �

Proof of Proposition 5.2. We show that the map f : Pd → S satisfies the hypotheses
of Lemma 5.5.

We know by Lemma 5.4 that Pd → S is separated and locally of finite. The fact
that f is a bijection follows from the fact that, for any field K, all line bundles
over PK(n0, n1, · · · , nr) are of the form O(d); see Lemma 3.2. A section for f is
provided by the line bundle O(d) on PS(n0, n1, · · · , nr).

All that is left to check is that f has reduced fibers. Let K be a field and set
R = K[ε]/(ε2). We must show that the only line bundle on PR(n0, n1, · · · , nr)
whose restriction to the special fiber is isomorphic to O(d) is itself isomorphic to
O(d). To prove this, first we twist by O(−d) and reduce to the case d = 0. Let L

be a line bundle on PR(n0, n1, · · · , nr) whose restriction to the special fiber is O.
Let f ∈ R[t, t−1, x0, · · · , xr]

× be the cocycle representing L, as in Section 3. (Here
we are implicitly using Lemma 2.1.iii and Lemma 3.1; also see the exercise at the
end of Section 2.) Recall that the cocycle condition means the following identity:

f(ts, x0, · · · , xr) = f(s, tn0x0, · · · , t
nrxr)f(t, x0, · · · , xr).

Since the restriction of L to the special fiber is trivial, we can, after modifying
f , assume that f = 1 + εg, where g ∈ K[t, t−1, x0, · · · , xr] satisfies the following
cocycle condition:

g(ts, x0, · · · , xr) = g(s, tn0x0, · · · , t
nrxr) + g(t, x0, · · · , xr).

We will show that this cocycle is a coboundary, in the sense that, there exists
h ∈ K[x1, · · · , xr] such that

g(t, x0, · · · , xr) = h(tm0x0, · · · , t
mrxr)− h(x0, · · · , xr).

We can express g uniquely in the form

g(t, x0, · · · , xr) =
∑

J

gJ (t)xJ .

Here J runs through a finite set of r-tuples (j0, · · · , jr) of positive integers, xJ

stands for the monomial xj0
0 · · ·x

jr
r , and gJ(t) is a Laurant polynomial in t. The

cocycle condition for g now reads

∀J, gJ(ts) = gJ(s)tJ·n + gJ(t),

where n = (n0, · · · , nr), and · stands for dot product of vectors. The above identity
implies that gJ is indeed a polynomial in t, because a negative power of t supplied
by gJ(t) on the right hand side can not correspond to anything on the left hand
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side. Set aJ := −gJ(0) ∈ K. By plugging s = 0 in the above equality, we see that
gJ(t) = aJ(tJ·n − 1). Set

h(x0, · · · , xr) :=
∑

J

aJx
J .

It is easily verified that

g(t, x0, · · · , xr) = h(tm0x0, · · · , t
mrxr)− h(x0, · · · , xr).

This proves that g is a coboundary. The proof is complete. �

Remark 5.6. The last part of the above proof can be interpreted as saying that
H1

(

PR(n0, n1, · · · , nr),O
)

= 0, where R = K[ε]/(ε2).

6. Alternative approach

It was pointed out to me by Angelo Vistoli [7] that there is an easy way to
prove Theorem 4.2 using Grothendieck’s base change results ([3], III. Theorem
12.11). Here is how the proof goes in the case of the usual projective space P

r
S .

The appropriate modifications that are needed to make this proof applicable to the
general case of weighted projective stacks will be explained afterwards.

An alternative proof of Theorem 4.2 for P
r
S. We show that, for any connected base

scheme S, a line bundle L on P
r
S is uniquely expressed in the form f∗(M)⊗ O(d),

where M is a line bundle on S and f : P
r
S → S is the base map. Furthermore,

under this identification, an isomorphism ϕ : L→ L′ is of the form p∗(ψ)⊗ id, for
a unique isomorphism ψ : M→M′.

The proof of the above statement is quite easy using ([3], III. Theorem 12.11).
First, we can reduce to the case where S is affine. Since a line bundle on P

r
S is

given by finitely many data, we may assume S is finitely generated over Z, and in
particular Noetherian.

Step 1. First we prove that there exists an integer d such that Lx
∼= O(d) for every

point x ∈ S. This of course was already proved in Lemma 5.1, but we give a direct
proof.

Since S is connected, it is enough to prove that, for every x ∈ S, the statement
is true in some neighborhood of x. After tensoring L by O(−d), we may assume
that Lx

∼= O. In particular, H1(Pr
x,Lx) = 0. By semicontinuity, the same is true in

some neighborhood of x. So, after shrinking to this neighborhood, we may assume
it is true for every point on S. The maps

φ1(y) : R1f∗(L)⊗ k(y)→ H1(Pr
y,Ly)

are now surjective, for all y ∈ S. Hence, by ([3], III. Theorem 12.11.a), φ1(y) must
be an isomorphism for every y ∈ S. In other words, the fibers of the coherent
sheaf R1f∗(L) are zero at every point y ∈ S. This implies that R1f∗(L) = 0. In
particular, R1f∗(L) is locally free. It follows now from ([3], III. Theorem 12.11.b,
with i = 1), that, for every y ∈ S,

φ0(y) : f∗(L)⊗ k(y)→ H0(Pr
y,Ly)

is surjective, hence an isomorphism, by ([3], III. Theorem 12.11.a). On the other
hand, f∗(L) is locally free of rank 1, by ([3], III. Theorem 12.11.b, with i = 0). We
conclude that the dimension of H0(Pr

y,Ly) is 1 for every y. This means, Ly
∼= O,

for every y ∈ S.
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Step 2. We show that, if Ly is trivial for every y, then there exists a line bundle M

on S such that f∗(M) ∼= L. The claim is that M := f∗(L) has the desired property.
We have already shown above that M is locally free of rank H0(Pr

y,Oy) = 1. By
adjunction, we have a natural map f∗M→ L. We claim that this is an isomorphism.
Since the statement is functorial, we may replace S by smaller open sets and assume
that M is free of rank 1. Choose a generator s for it and let σ be the image of s in
L under the adjunction map f∗M → L. We show that σ is a generator for L by
proving that it is nowhere vanishing. This is quite easy, because if σ vanished at a
point x ∈ P

r
S , it would vanish along the entire fiber P

r
y, where y = f(x). But this

would then imply that s vanishes at y which is impossible. �

Let us summarize the key facts that made the above proof possible.

A. The map f : P
r
S → S is flat and proper, so we can use Grothendieck’s Base

Change and Semicontinuity.
B. For every field k, we have H1(Pr

k,O) = 0.
C. For every field k, every line bundle over P

r
k is of the form O(d). If for a line

bundle L we have the equality dimk H
0
(

P
r
k,L

⊗m
)

= 1 for every m ∈ Z,
then L ∼= O.

(In fact, in (A) knowing the equality with m = 1 was already enough to show
that L ∼= O. But, for weighted projective spaces this in general will not be enough.
More precisely, in Step 1, after reducing to the case Ly

∼= O, we will have to repeat
the argument for every tensor power L⊗m.)

All of the above three facts are indeed true for arbitrary weighted projective
stacks, as we will see shortly. So, once we have Grothendieck’s base change (and
Semicontinuity) for stacks, Theorem 4.2 follows (see Appendix I).

Let us verify (A), (B) and (C) for arbitrary weighted projective stacks. It is well
knows that f : PS(n0, n1, · · · , nr) → S is proper and flat; this takes care of (A).
Remark 5.6 implies (B). To prove (C), observe that H0(Pr

k,O(d)) is naturally
isomorphic to the k-vector space of homogenous monomials of degree d in weighted
variables {x1, · · · , xr}, where xi is of weight ni. Hence, dimk H

0(Pr
k,O(d)) is equal

to the number of solutions of the equation

a1n0 + a2n1 + · · ·+ arnr = d

in non-negative integers ai. It is not in general true that if the number of such
solutions for d and d′ are equal then d = d′. However, it is true that if the number
of such solutions are equal for md and md′, for all integers m, then d = d′. This
shows that (C) is true, completing our argument.

7. Appendix I: Grothendieck’s base change results for algebraic

stacks

In this appendix I present a proof, essentially due to Vistoli, of Grothendieck’s
base change and semicontinuity theorems for the special case of weighted projective
stacks.1

Proposition 7.1. Let S be an arbitrary base scheme. Let G be a diagonalizable
group scheme (in the sense of [2]) over S, and p : X → S a scheme separated over
S endowed with a G-action with finite stabilizers. Assume X can be covered by

1Martin Olsson [6] has explained to me that the base change theorem can be proved in full

generality using the results of his papers.
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invariant open subschemes Xα such that each p : Xα → S is affine. Let X = [X/G]
be the stack quotient and Xmod = X/G the geometric quotient, with π : X → Xmod

the moduli map. Let π∗ : Qcoh(X)→ Qcoh(Xmod) be the push forward map. Then
π∗ has the following properties:

i. π∗ is exact and sends flat (over S) quasi-coherent sheaves to flat (over S)
quasi-coherent sheaves.

ii. Formation of the coarse moduli space commutes with arbitrary base change,
and so does π∗. More precisely, for every S ′ → S, the following diagram is
cartesian,

XS′

v

πS′

XS

πS

(XS′)mod u
(XS)mod

and we have u∗ ◦ (πS)∗ = (πS′)∗ ◦ v
∗.

Proof. For each α, the geometric quotient Xα/G is given by Spec(p∗OXα
)G. That

is, Xmod has an affine (relative to S) covering by Spec(p∗OXα
)G. For any quasi-

coherent sheaf F on X, viewed as a G-equivariant sheaf on X, its push forward π∗F

is given on each Spec(p∗OXα
)G by (p∗F)G. The proposition now follows from the

fact that, for any diagonalizable group scheme over S, and any G-equivariant quasi-
coherent sheaf A on S, such as p∗OXα

or p∗F, we have a natural decomposition

A =
⊕

λ∈Λ

Aλ,

where each λ : G → Gm is a character of G, and Λ is the set of all characters. In
particular, for every λ, the functor A 7→ Aλ is exact, sends flat (relative to S) quasi-
coherent sheaves to flat quasi-coherent sheaves, and commutes with arbitrary base
change S′ → S. Applying this to our situation, with λ being the trivial character,
the proposition follows. �

Corollary 7.2. If in the above proposition Xmod → S is proper and S is Noether-
ian, then Grothendieck’s semicontinuity and base change theorems are valid for the
morphism X→ S.

Proof. Push forward everything from X to Xmod and apply the relevant results for
the map Xmod → S. �

Example 7.3. Let X = A
r
S − {0}, and consider the weight (n0, n1, · · · , nr) action

of G = Gm,S on X. Let {Xi}
r
i=1 be the standard covering of X, where Xi =

SpecOS [x0, · · · , xr, x
−1
i ]. Then the conditions of the proposition are satisfied.

References

1. M. Aoki, Hom stacks, arXiv:math.AG/0503358, March 2005.
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