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Plan:

e Survey of non-Hermitan random matrices
(ensembles, tools, results, open problems)

e Weakly non-Hermitian random matrices

e Asymmetric tridiagonal random matrices



Part I. Survey of non-Hermitian random matrices

only slides with results of numerical experiments are
available at present



Circular distribution of eigenvalues

(complex matrices)
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Normalized eigenvalues of 20 complex matrices of size
n = 100 represented by dots. Matrix entries are “drawn”
independently from N(0,1/2) 4 iindependentN(0,1/2).



Circular distribution of eigenvalues

(real matrices)
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Normalized eigenvalues of 20 real matrices of size n =
100 represented by dots. Matrix entries are “drawn”
independently from N(0,1).



Uniform distribution of real eigenvalues

(real matrices with normally distributed entries)
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Histogram of normalized real eigenvalues of 1000 real
matrices of size n = 50. Matrix entries are “drawn”
independently from N(0,1). The total number of real

eigenvalues is 6250.



Uniform distribution of real eigenvalues

(real matrices with uniformly distributed entries)
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Histogram of normalized real eigenvalues of 1000 real
matrices of size n = 50. Matrix entries are “drawn”
independently from the uniform distribution with zero
mean and unit variance. The total number of real eigen-

values is 6004.



Part II Weakly Non-Hermitian Random Matrices



Consider random n x n matrices J = A + ivB

(i) A and B are independent Hermitian,
with i.i.d. entries

(i) E(A) =0, E(B)=0

(iii) E(tr A%) = E(tr B?) = ¢°n?

Motivation: for any complex J

J=X+4iY where X =L and v = L,

Since A and B are Hermitian, have Jy; and J correlated
forall 1 <k<l<mn:

E(JuJi) = E(JAu|?) — v E(|Bi|?) = 0°(1 — v?).
All other pairs are independent.
Have central matrix distribution with two parameters:
02(1 + ’v2) = E(|jkl|2)
and
E(JuJik) _1—w?
VE(TDE( ) 1+v?

T = cort(JuJi) =

Without loss of generality, assume o2 = 1/(1 4+ v?), so
that

E(|Jul?) =1 and E(JuJy) =T

Typical eigenvalues of J are of the order of v/n, SO in-

troduce J = J/v/n = (A+ivB)/\/n.



Eigenvalue correlation functions R} (z1,...z;):

R (z) is the probability density of finding an eigenvalue

of J = ﬁ regardless of label, at z.

E.g., if Dg is an infinitesimal circle covering zgp, then
the probability of finding an eigenvalue of J in Dg is
approximately R7(zo) x area(Dy).

Similarly, R} (z1,...z;) is the probability density of finding
an eigenvalue J, regardless of labeling, at each of the
points zi,... z.

Have k slots z1,...z; and n eigenvalues of J to fill these
slots, hence normalization:

/.../RZ(Zl,...Zk)dQZl'“dQZk:’)’L(’)’L—l)“'(’n—k}—l—l).

Rg”)(z) gives the mean density of eigenvalues at z, i.e.

Rgn)(z) = E<Z5(2)(2 — )\j)>
where the summation is over all eigenvalues \; of J and
0@ (z + iy) = 6(x)8(y).

If Np is the number of eigenvalues in D, then

HM»=LR@@M%=//ﬁ@@wMMy
D

Convention: z =z + iy = (z,y) and d?z = dzdy.



From now on, replace (i)-(iii) by

(iv) Hermitian A and B are drawn independently from
the normal matrix distribution with density

1 1 1 1 —
“exp|———trX?) = Zexp | —— Xul? |,
Q P ( 202 ) Q P 202 klzz:l |

where ¢2(1 + v?) = 1 (with no loss of generality).

Have

1 1
Xy~ N(O,502>—|—i><indp.N<O,502>, k<l
X ~ N(0,0%)

and the {Xy}, 1 <k <I<n are independent.

The entries of J = A + iwB have multivariate complex
normal distribution with density

-~ 1 — 2
exp |— (trJJ*—IRetrJQ> . T = v
1 — 72 2 1+ v2
Have E(Jy) = 0 and E(|Ju|?) = 1 for all (k,1) and
E(JuJmj) = 7 whenk=j and l=m

0O otherwise.

~

e If 7 = 0, then J has independent entries (Ginibre's
ensemble); have maximum asymmetry.

e IfT=1o0r7=-1, then J = J* (GUE) or J = —J*,
have no asymmetry at all.



Hermite polynomials:
22 A" 22
H,(z) = (=1)"exp (5> ——exp (——)
t2 0 n
Generating function: exp (zt — 5) = Z H"(Z)H'

By making use of generating function,

o0 .732
Hy () Hy () €Xp ( _ 5) de = SpmnV21 (1)

— 00

and, forall 0 <7< 1,

i) w?(z,2)d?z = Sy mmn!  (2)

vz () (R

w?(z,z) = exp{—l_l 2[|z|2—%(22—|—,§2)]}
— (-t -
147 1-—171
Since
1 y2
Wexp(—ﬁ)ﬁé(y), as o — 0,

(1) can be obtained from (2) by letting 7 — 1.

Useful integral representation:

:l:' n 2 ‘l‘OO t2
H,(z) = (1) exp (%) / t" exp ( Y F izt) dt.
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Finite matrices

Theorem* Under assumption (iv), for any finite n and
any 0 <r<1,

R (z1,... z1) = det || K (zm, 2)IE, 121,
where

K7('n) (21, 52)

|
S
N
(S
= =
=
N
e
N
—
N——
E
VN
33
N
N
N——
X

Special cases: 7 = 0 (Ginibre's ens.) and 7 =1 (GUE).
When 7 = 0 (in the limit = — 0, to be more precise):
n—1 .
n _ n n] - n
K (21,22) = = S 2dF exp |- S(1mf + |22P)]
T 2
Can be seen from

¢3545%>=z”+va(m)

Sketch of proof: obtain induced density of eigenvalues
and use the orthogonal polynomial technique; the re-
quired orthogonal polynomials are Hermite polynomials

Hj(ﬁZ), they are orthogonal in C with weight function
w?(z, Z)
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Mean eigenvalue density for finite matrices

By Theorem (*), R™(z) = K™ (z, %), and
(a) ifO< 7 <1 then

2|2 — T Rez
—n

RW()=—" . 2(1-72 i

71— 12 ]:OJI

By letting 7 — 0 in (a):
(b) If = 0 (Ginibre's ensemble) then

n—1 ;
n N _plz2 ¥
Rg)(z)Z;e n|z| Z —.

= 7

By letting 7 — 1 in (a):
(c) if r=1 (GUE) then

n
R () = RO (e, y) = () e 2 Z

(7

[H (V)|
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Limit of infinitely large matrices
Consider matrices J = X + Y.

Can have two regimes when n — oo:
e strong non-Hermiticity E(trY?) = O(E(tr X?)),
e weak non-Hermiticity E(tr Y?) = o(E(tr X?)).

If v2 > 0 stays constant as n — oo, have strongly non-
Hermitian J = \/iﬁ (A + ivB).

19?2
Recall r = FZJJZ
Theorem (*):

The following result is a corollary of

Theorem (Girko's Elliptic Law) For any 7 € (—1,1)
and any bounded D C C

EWn) =n [ [ p(e,5) dedy +o(n)
D

where Np is the number of eigenvalues of J in D and

1 xr2 y2
p(z,y) =< A=) when iy + gy S 1
0, otherwise

(Girko considered matrices J with symmetric pairs (Ji2, J21),
(J13,J31), ... drawn independently from a bivariate dis-
tribution (not necessarily normal))

Note: lim -1 liMmpsoo Z lIMpeo liMr_1.
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Elliptic distribution of eigenvalues

2.5
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Eigenvalues of 20 complex matrices J = ﬁA + s

of size n = 100 represented by dots. Matrices A and B
are “drawn” independently from the GUE with normal-
ization E(tr A?) = E(tr B?) = n” and v = 0.5.
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Local scale: area is measured in units of mean density
of eigenvalues, i.e. unit area contains, on average, 1
eigenvalue.

Unit area on the global scale is n times unit area on the
local scale.

Limit distribution of eigvs of J: uniform in the ellipse

_ . ZCQ y2
5_{2' (1+T)2+(1—T>2§1}

of area || = mv/1 —72. That is
IDNE|
el

E(Np) =

E.g. if zo =204 tyo € £ and

«

=y — ol < -
2/n|E| 2¢/n|€&|

D={z:]|z—x0| <

}

then E(Np,) = af.

But also

E(Np) = / / R{M (2)d?z = / / ﬁR@ (zo—l— \/%)dlw
D

Rescaled mean density of eigenvalues (around zp):

1 n w
—R§>(zo+ )

’I’L|8| \/'n,|8|
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Similarly, rescaled eigenvalue correlation functions:

1 n w w
Rl(s)(20+—1 L, 20— )

(n|E|)* VnlEl V€]

The following result is a corollary of Theorem (*):

R,gn)(wl, ce ,wk) =

Theorem For any € (—1,1) and zg € int&

lim R (wi, ..., wy) = det ||K (win, @)|[%, 1.

n— 00

where

~ _ 1 1
K (w1, w2) = exp (w1w2 — §|’wl|2 - §|w2|2)

E.g., the first two correlation fncs:
Ri(w) = K(w,w)=1

RQ(’UJ,’UJQ) = Rl(’wl)Rl(WQ)_|K(wlau_J2)|2
= 1 —exp(— |w1 —w2|2>.
No dependence on zg, and, remarkably, no dependence
on T.
Again,

lim lim #= lim lim.
T—1 n—oo n—oo 7—1
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Eigenvalues of weakly non-Hermitian matrices

2.5

151

0.5

: : _ A . B
Eigenvalues of 20 complex matrices J = %A + s

of size n = 100 represented by dots. Matrices A and B
are “drawn” independently from the GUE with normal-
ization E(tr A?) = E(tr B?) = n? and v = 0.05.
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Eigenvalues of weakly non-Hermitian matrices
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Eigenvalues of 20 complex matrices J = %A + iv\%

of size n = 100 represented by dots. Matrices A and B
are “drawn” independently from the GUE with normal-
ization E(tr A?) = E(tr B%?) = n? and v = 0.05.
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Regime of weak non-Hermiticity

Now consider matrices J = n + W in the limit when
n—oo and v?n — const. (3)

May think of eigenvalues of J as of perturbed eigenval-
ues of 4. The eigenvalues of - are all real and are

vn vn
distributed in [—2,2] with density
1
Vee(z) = - 4 —x?  (Wigner's semicircle law!)
T

When perturbed they move off [-2,2] into C on the
distance of the order % (first order perturbations). Cor-
respondingly, consider

t
D={(z,y) rxelC[-2 2], <y < -}
n
Then
t ) R
E(Np) = // Rgn)(m,y)dmdy = dm/d@—Rﬁ"’(x,g),
n n
D I S
where
Yy = ny.
Hence

_ _ L ). ¥
5 (2, 5) 1= LR >(sc, —)
n n
is the mean density of rescaled (distorted) eigenvalues
z=x+ 1y = x + iny.
19



The following result is a corollary of Theorem (*).
Theorem (Fyodorov, Khoruzhenko and Sommers)

Let =1 — g—; Then, under assumption (iv),

lim 5" (z,5) = p(x,7),
n—oo

where
v, ()
5z, 7) 1 exp( 252) / exp( a’u? 5 A) du
Z, = — — — — 2uy | —.
PRE Y T a2 2 J V271
—7vse(T)
In the limit when o« — O
1 2@2

exp( > — 1 6(g)
V2T a2 2m J

and

p(x,7) = §(§)vse(x) Wigner's semicircle law

20



Introduce curvilinear coordinates in the (z,y) plane:

~ Yy
(z,9) = <x, stc(m)>°
If
NPT 1 Yy
pla,§) = Wysc(x)p(x’ 71'1/80(3:)>
then
p(x, 7) = vse(2)p=(7),
where

- 1 a2g?y [t a2 N\ dt
- = exp (— ) / exp (— — 2t )—
po () V2ma 2 1 2 v V2T

and a = wvs.(x)a.

e Interpretation of p.(7).
e Universality of p.(7).

In the limit when a — oo obtain uniform density

1

p(z, ) = { e

0, otherwise

when [7] < £

Eigenvalue correlation functions:

have a crossover from Wigner-Dyson to Ginibre

21



Weakly non-Hermitian matrices

1.2 T T T 1.2

1 (a) 1 (b)
0.8 0.8}
0.6 0.6}
0.4 0.4}

0.2 0.2f

Histogram of the scaled imaginary parts y of complex
eigenvalues of weakly non-Hermitian matrices
J:%A—Hv% of size n = 30. v:%

The solid line is the graph of p.(7) (n = c0).

For each plot 20000 matrices were generated and di-
agonalized. Eigenvalues z;, = z; + iy; falling into the
window, |z;| < 0.2, were selected and their imaginary
parts y; were scaled, g; = 2nv,.(0)ny;.

For plot (a), the matrices A and A were “drawn” inde-
pendently from the GUE with normalization E(tr A%) =
E(tr B2) = n2/2.

For plot (b), the entries of A and B were “drawn” from
Bernoulli(3).
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Another type of weakly non-Hermitian matrices:

e Dissipative matrices:
J=A-+4:", [ >0 and is of finite rank m

Weakly non-unitary matrices:

e Submatrices of size m of unitary matrices of size n,
in the limit n - co and m = n —a, a iS a constant.

e Contractions: random matrices J = U+ I — T, where
UeU(n) and 0 < T < I in the limit when n — oo
and the rank of T remains finite. (Note that J*J =
I-T)

Weakly asymmetric matrices

J = A+ vB, where A and B are real and AT = A,
BT = —B.

23



Part III Asymmetric Tridiagonal Random Matrices

24



Imposing periodic boundary conditions:

%1 q1 b1 al
a q2 b2
bn an dn kn

Problem: Fix a rectangle K C C and let n —+ oo. What
proportion of eigenvalues of J, are in K? [Eigenvalue
distribution].

Example: a; = a, bj = b, qj = ¢q for all k£ and a,b,q € R.
The limit eigenvalue distribution is supported by the
ellipse

{(z,y) :2=q+(@+b)cosp, y=(@—b)sinp, p e [0,27]}

How will this picture change if allow random fluctuations
of a, by and q,? Answer depends on the sign of apbi_1q.

Consider

J, = tridiag(a,qr,br) + p.b.c.
with positive sub- and super-diagonals:

ar = exp(€k-1), br = exp(nx)

25
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Eigenvalues of J, (n = 201) where (a) all non-zero en-
tries are drawn from Uni[0, 1]; and (b) the sub-diagonal
and diagonal entries are drawn from Uni[0, 1] and super-
diagonal entries are drawn from Uni[3, 12].
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15 ] -15}
2 ‘ 2
1 0 1 2 1 0 1 2

Eigenvalues of J, (n = 201) where (a) the sub- and
super-diagonal entries are drawn from Uni[—2, 1] and the

272
diagonal entries are drawn from Uni[0, 1]; and (b) the
sub-diagonal entries are drawn from Uni[—1,1], and the

diagonal and super-diagonal are drawn from Uni[O, 1]
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Assumptions:

() (&, mk,qr), Kk =0,1,2,..., are independent samples
from a probability distribution in R3.

(II) E(n(1+1|q|)), E(&) and E(n) are finite.
E.g9. (&,mk,q:), k=0,1,2,..., are independent samples

from a 3D prob. distr. with a compact supp. in R3.

By making use of the similarity transformation W, =
diag(wl, .. .wn), wg = exp %Zf;é(fj — ?7]')],

W I W, = H, + Vy,

where

qi c1 0 0 0 0 wup
m= | %=l e 0 o o

0 Ch-1 qn v, O O O
cr = v/ak+1bx = e2(&+m) and

Un vy = e"E—m)+o(1)] as 1 — oo

rank 2 asymmetric perturb. of symmetric H,!
"Rank 2" = eignv. distbs. of H,, and H,+4V,, are related

" Strongly asymmetric” = non-trivial relation.
27



Facts from theory of Hermitian random operators:

e Empirical distribution fnc. of eigvs. of H,
1
N(I,H,) = —#{eigvs. of H, in I C R}
n

— /IdNn()\), Np(N) =N ((—o0,)\],Hy)

dN, assigns mass = to each of eigvs. of H,.
Proposition 3 nonrandom N(A) VI C R:

lim N(I,H,) = /dN(A)
n—oo I

e Potentials: p(z; Hy) = [log |z — A|dN, ()
®(z) = [log|z — A|dN(N)

e Lyapunov exponent v(z) = lim,_oo %E(In 1S (2)]])

Proposition (Thouless formula)

lim p(z; Hy) £ d(2) wnif. in z on K C C\R
A = v(2) + Elog co

Corollaries:

d(z) continuous in z;
d(z+iy) >Elogey Vy #0; etc.

28



Consider

L={z€C: ®(z) =max[E({), E(no)]}

This curve is an equipotential line of limiting eigenvalue
distribution of H,.

If the probability law of (&, mx,qx) has bounded support
then L is confined to a bounded set in C and is a union
of closed contours:

There are a1 < f1 < az < B2 <... such that
L=UL;, Lj={zr+twy;(z):z €|y pb]}
Notation:
N(K,J,) = %#{eigvs. of J, in K}, K cC

(describes distribution of eigenvalues of J,)

Theorem (Goldsheid and Khoruzhenko) Assume (I-1I).
Then, with probability one,

(a) VK C C\R: N(K,J,) = [ p(2(s))ds

n—oo

KnLC

where p(z) = %

deNf(AA)‘ and ds is the arc-length mea-
sure on L.

(b) VI CR: N, J,) mf dN(N)
Tw

where Iy =T N {X: ®(A4140) > max[E(&), E(no)]}
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Sketch of proof: Let

1 1
p(z; Jn) = —Z log |z — zj| = —log | det(J, — z)]
n n

where z1,...,z, are the eigenvalues of J,.

Claim (convergence of potentials)
With probability one,
p(z; Jn) =2F(2) = max[®(z),E(&), E(no)] Vz¢RUL

n—oo

The convergence is uniform in z€ KCC\(RUL).

Consider measures dv; assigning mass % to each of the
eigenvalues of J,. Then

1
_AP(Z; Jn) = dvy,
2m

in the sense of distribution theory. By Claim, the poten-
tials p(z; J,) converge for almost all z € C. This implies
convergence in the sense of distribution theory. Since
the Laplacian is continuous in D/,

1 1
—Ap(z; Jn) - —AF(2)
21 21
in D'. But then
1
dvy — dv=—AF(z)
21

in the sense of of weak convergence of measures, hence
Theorem.

30



Proof of Claim

det(J, — z) det(H, + V, — 2)

det(H, — z) det(I, 4+ Vu(H, — 2)~ 1Y)

Therefore

1
p(z; Jn) = p(z; Jn) + " log |dn(2)].
V, is rank 2. VvV, = AT B, where
(wu, O ... 00\, (0 O ... 0
A_(o 0 ... 0 1>B_(vn 0 ... 0

oo dp(2)

o+

)

det(I, + ATB(H, — 2)™1)
= det(Ilp + B(H, — z) " 1AT) 2 x 2det
— (1 +UnG1n) (1 +'UnGn1) —unvnG11Gnn
where Gy, is the (k,1) entry of (H, — z)~ 1.

Now use
|’U,nG1n| = en[E@O)—q)(z)-l-o(l)]

|'UnGn1| e en[E(UO)—CD(Z)—I—O(l)]

and |1 — upvn,G11Gnn| > a(z) > 0, z € R to complete the
proof.
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Exactly solvable model

Consider J, = tridiag(e9, Cauchy(0,b), e 9) 4+ p.b.c,,

1 b
=g, =—gqg P el)=—|[d
k=9, m=—-9g Plaw€l) 7T/I ey

In this case J, = W, (H, + V,,)W,, where
H,, = tridiag(1, Cauchy(0,b), 1) Lloyd’s model

For Lloyd’s model an explicit expression for d(z) is avail-
able:

4 cosh d>(z)=\/(a:—|-2)2—|-(b-|- |y|)2+\/(:c—2)2+(b+ [y1)?

By making use of it,

o If K =2coshg < K., = /4 + b° then L is empty.

o If K > K. then L consists of two symmetric arcs
K2 — 4)(K? — 2

y(m)::l:[\/( 1((,2 )—b} —xp <z <z
xp is determined by y(xp) = 0.
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Corollaries

g = 1E(& —no) is a measure of asymmetry of J,.

(1) Special case: Suppose that g, = Const all k. Then
~v(0) =0 and ~(z) > 0 Vz # 0. Since

(0) =(0) + S B(Eo +m0) < Max[E(&o), B(no)]

the equation for £, ®(z) = max[E (&), E(no)], has con-
tinuum of solutions for any g # 0.

For any g # O we have a bubble of complex eigv. around
z = 0, i.e. no matter how small the perturb. V,, is, it
moves a finite proportion of eigvs. of H, off the real
axis!

(2) Suppose now that the diagonal entries g, are ran-
dom. Then v(z) > 0 Vz € R (Furstenberg) and

- _ W ) <
O<r£|£w(:v) ger” < Jer TEaZXq/(a:)_-I—oo

where X is the support of dN()\). Therefore

(@) If|g| < 98), Jn has zero proportion of non-real eigen-

values

(b) If g((zlr) < |g| < 98), Jn has finite proportions of real
and non-real eigenvalues.

(c) lg| > g((:Qr), Jn has zero proportion of real eigenvalues.
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A few elementary facts from potential theory.

Suppose that M, is an n X n matrix. Denote by dy, the
measure on C that assigns to each of the n eigenvalues
of M, the mass i. Its potential is given by

(2 M) %Iog | det(My, — 21,)]
= /WOQV—CM%AO
C

p(z; M) is locally integrable in z and for any sufficiently
smooth function f(z) with compact support

/Iog 1z — C|Af(2)d?z = lim log |z — ¢|Af(2)d?2
C b0 Jiz—¢|>e
= 2nf(Q),
by Green's formula. Hence
1

— mZMJAﬂ@fz—/f@mW@>

T

Both p(z; M,) and dy,, define distributions in the sense
of the theory of distributions and the equation above
can be also read as the equality dy, (z) = %Ap(z;Mn)
where now A is the distributional Laplacian. More gen-
erally, it is proved in potential theory that, under ap-
propriate conditions on dv, dv(z) = =Ap(z), where
p(z) = [log|z — ¢|du,(¢) is the potential of dv. This
Poisson’'s equation relates measures and their poten-
tials.
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Regularization of potentials
1
n

1
—Ap(z;Jn) = pe(z; Jn)
2w

— %25(2 —z;) [n is finite]

lim lim p(z; J,) = I|m |Imp5(z Jn) 17
e—0n—o0

Yes, for normal matrices. Counterexamples for non-
normal matrices

In the vicinity of z;:
(kje)? 1

7 [(kje)? + |z — z|?]?
— 0(z—2z) ifr;j#0

where r; = [(7,%7) "t and gbjL(R) are normalized left
(right) eigevectors at z;.

Ps(Z; Jn) =

Spectral condition numbers, pseudospectra, etc.
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