Non-Hermitian random matrices

Boris Khoruzhenko
School of Mathematical Sciences
Queen Mary, University of London
B.Khoruzhenko@qmw.ac.uk
http://www.maths.qmw.ac.uk/~boris

The Diablerets Winter School "Random Matrices" (18-23 March 2001)

Plan:

- Survey of non-Hermitan random matrices (ensembles, tools, results, open problems)
- Weakly non-Hermitian random matrices
- Asymmetric tridiagonal random matrices

only slides with results of numerical experiments are available at present

Circular distribution of eigenvalues (complex matrices)

Normalized eigenvalues of 20 complex matrices of size n=100 represented by dots. Matrix entries are "drawn" independently from N(0,1/2)+iindependentN(0,1/2).

Circular distribution of eigenvalues (real matrices)

Normalized eigenvalues of 20 real matrices of size n=100 represented by dots. Matrix entries are "drawn" independently from N(0,1).

Uniform distribution of real eigenvalues (real matrices with normally distributed entries)

Histogram of normalized real eigenvalues of 1000 real matrices of size n=50. Matrix entries are "drawn" independently from N(0,1). The total number of real eigenvalues is 6250.

Uniform distribution of real eigenvalues (real matrices with uniformly distributed entries)

Histogram of normalized real eigenvalues of 1000 real matrices of size n=50. Matrix entries are "drawn" independently from the uniform distribution with zero mean and unit variance. The total number of real eigenvalues is 6004.

Part II V	Veakly	Non-He	rmitian	Random	Matrices
					6

Consider random $n \times n$ matrices $\tilde{J} = A + ivB$

(i) A and B are independent Hermitian, with i.i.d. entries

(ii)
$$E(A) = 0$$
, $E(B) = 0$

(iii)
$$E(\operatorname{tr} A^2) = E(\operatorname{tr} B^2) = \sigma^2 n^2$$

Motivation: for any complex J J=X+iY where $X=\frac{J+J^*}{2}$ and $Y=\frac{J-J^*}{2i}$.

Since A and B are Hermitian, have \tilde{J}_{kl} and \tilde{J}_{lk} correlated for all $1 \leq k < l \leq n$:

$$E(\tilde{J}_{kl}\tilde{J}_{lk}) = E(|A_{kl}|^2) - v^2 E(|B_{kl}|^2) = \sigma^2 (1 - v^2).$$

All other pairs are independent.

Have central matrix distribution with two parameters:

$$\sigma^2(1+v^2) = E(|\tilde{J}_{kl}|^2)$$

and

$$\tau = \operatorname{corr}(\tilde{J}_{kl}\tilde{J}_{lk}) = \frac{E(\tilde{J}_{kl}\tilde{J}_{lk})}{\sqrt{E(|\tilde{J}_{kl}|^2)E(|\tilde{J}_{lk}|^2)}} = \frac{1 - v^2}{1 + v^2}.$$

Without loss of generality, assume $\sigma^2 = 1/(1+v^2)$, so that

$$E(|\tilde{J}_{kl}|^2) = 1$$
 and $E(\tilde{J}_{kl}\tilde{J}_{lk}) = \tau$

Typical eigenvalues of \tilde{J} are of the order of \sqrt{n} , so introduce $J = \tilde{J}/\sqrt{n} = (A+ivB)/\sqrt{n}$.

Eigenvalue correlation functions $R_k^n(z_1, \dots z_k)$:

 $R_1^n(z)$ is the probability *density* of finding an eigenvalue of $J=\frac{\tilde{J}}{\sqrt{n}}$, regardless of label, at z.

E.g., if D_0 is an infinitesimal circle covering z_0 , then the probability of finding an eigenvalue of J in D_0 is approximately $R_1^n(z_0) \times \text{area}(D_0)$.

Similarly, $R_k^n(z_1, \ldots z_k)$ is the *probability density* of finding an eigenvalue J, regardless of labeling, at each of the points $z_1, \ldots z_k$.

Have k slots $z_1, \ldots z_k$ and n eigenvalues of J to fill these slots, hence normalization:

$$\int \ldots \int R_k^n(z_1,\ldots z_k)d^2z_1\cdots d^2z_k = n(n-1)\cdots(n-k+1).$$

 $R_{\mathrm{1}}^{(n)}(z)$ gives the mean density of eigenvalues at z, i.e.

$$R_1^{(n)}(z) = E\left(\sum \delta^{(2)}(z - \lambda_j)\right)$$

where the summation is over all eigenvalues λ_j of J and $\delta^{(2)}(x+iy) = \delta(x)\delta(y)$.

If N_D is the number of eigenvalues in D, then

$$E(N_D) = \int_D R_1^{(n)}(z) d^2z = \int_D \int R_1^{(n)}(x, y) dxdy$$

Convention: $z = x + iy \equiv (x, y)$ and $d^2z = dxdy$.

From now on, replace (i)-(iii) by

(iv) Hermitian A and B are drawn independently from the normal matrix distribution with density

$$\frac{1}{Q} \exp\left(-\frac{1}{2\sigma^2} \operatorname{tr} X^2\right) = \frac{1}{Q} \exp\left(-\frac{1}{2\sigma^2} \sum_{k,l=1}^n |X_{kl}|^2\right),\,$$

where $\sigma^2(1+v^2)=1$ (with no loss of generality).

Have

$$X_{kl} \sim N\left(0, \frac{1}{2}\sigma^2\right) + i \times \text{indp.} N\left(0, \frac{1}{2}\sigma^2\right), \quad k < l$$

 $X_{kk} \sim N(0, \sigma^2)$

and the $\{X_{kl}\}$, $1 \le k \le l \le n$ are independent.

The entries of $\tilde{J}=A+ivB$ have multivariate complex normal distribution with density

$$\exp\left[-rac{1}{1- au^2}\left(\mathrm{tr}\, ilde{J} ilde{J}^*-rac{ au}{2}\,\mathrm{Re}\,\,\mathrm{tr}\, ilde{J}^2
ight)
ight],\quad au=rac{1-v^2}{1+v^2}.$$

Have $E(\tilde{J}_{kl})=0$ and $E(|\tilde{J}_{kl}|^2)=1$ for all (k,l) and $E(\tilde{J}_{kl}\tilde{J}_{mj})=\tau$ when k=j and l=m=0 otherwise.

- If $\tau=0$, then \tilde{J} has independent entries (Ginibre's ensemble); have maximum asymmetry.
- If $\tau=1$ or $\tau=-1$, then $\tilde{J}=\tilde{J}^*$ (GUE) or $\tilde{J}=-\tilde{J}^*$, have no asymmetry at all.

Hermite polynomials:

$$H_n(z) = (-1)^n \exp\left(rac{z^2}{2}
ight) rac{d^n}{dz^n} \exp\left(-rac{z^2}{2}
ight)$$
 Generating function: $\exp\left(zt - rac{t^2}{2}
ight) = \sum_{n=0}^{\infty} H_n(z) rac{t^n}{n!}.$

By making use of generating function,

$$\int_{-\infty}^{+\infty} H_n(x) H_m(x) \exp\left(-\frac{x^2}{2}\right) dx = \delta_{n,m} n! \sqrt{2\pi} \qquad (1)$$

and, for all $0 < \tau < 1$,

$$\frac{\tau^n}{\sqrt{1-\tau^2}} \int H_n\left(\frac{z}{\sqrt{\tau}}\right) H_n\left(\frac{\bar{z}}{\sqrt{\tau}}\right) w_{\tau}^2(z,\bar{z}) d^2z = \delta_{n,m} \pi n! \quad (2)$$

$$w_{\tau}^{2}(z,\bar{z}) = \exp\left\{-\frac{1}{1-\tau^{2}}\left[|z|^{2} - \frac{\tau}{2}(z^{2} + \bar{z}^{2})\right]\right\}$$
$$= \exp\left(-\frac{x^{2}}{1+\tau} - \frac{y^{2}}{1-\tau}\right)$$

Since

$$\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{y^2}{2\sigma^2}\right) \to \delta(y), \quad \text{as } \sigma \to 0,$$

(1) can be obtained from (2) by letting au o 1.

Useful integral representation:

$$H_n(z) = \frac{(\pm i)^n}{\sqrt{2\pi}} \exp\left(\frac{z^2}{2}\right) \int_{-\infty}^{+\infty} t^n \exp\left(-\frac{t^2}{2} \mp izt\right) dt.$$

Finite matrices

Theorem* Under assumption (iv), for any finite n and any $0 \le \tau \le 1$,

$$R_k^{(n)}(z_1,\ldots z_k) = \det ||K_{\tau}^{(n)}(z_m,\bar{z}_l)||_{m,l=1}^k,$$

where

$$K_{\tau}^{(n)}(z_{1}, \bar{z}_{2}) = \frac{n}{\pi \sqrt{1 - \tau^{2}}} \sum_{j=0}^{n-1} \frac{\tau^{n}}{j!} H_{j} \left(\sqrt{\frac{n}{\tau}} z_{1} \right) H_{j} \left(\sqrt{\frac{n}{\tau}} \bar{z}_{2} \right) \times \exp \left[-\frac{n}{2(1 - \tau^{2})} \sum_{j=1}^{2} (|z_{j}|^{2} - \tau \operatorname{Re} z_{j}^{2}) \right]$$

Special cases: $\tau = 0$ (Ginibre's ens.) and $\tau = 1$ (GUE). When $\tau = 0$ (in the limit $\tau \to 0$, to be more precise):

$$K_0^{(n)}(z_1, \bar{z}_2) = \frac{n}{\pi} \sum_{j=0}^{n-1} \frac{n^j}{j!} z_1^j \bar{z}_2^j \exp\left[-\frac{n}{2}(|z_1|^2 + |z_2|^2)\right].$$

Can be seen from

$$\sqrt{\tau^j}H_j\left(\frac{z}{\sqrt{\tau}}\right) = z^n + \sqrt{\tau} \times (\ldots)$$

Sketch of proof: obtain induced density of eigenvalues and use the orthogonal polynomial technique; the required orthogonal polynomials are Hermite polynomials $H_j\left(\sqrt{\frac{1}{\tau}}z\right)$, they are orthogonal in ${\bf C}$ with weight function $w^2(z,\overline{z})$

Mean eigenvalue density for finite matrices

By Theorem (*), $R^{(n)}(z) = K_{\tau}^{(n)}(z,\overline{z})$, and

(a) if $0 < \tau < 1$ then

$$R_1^{(n)}(z) = \frac{n}{\pi\sqrt{1-\tau^2}} e^{-n\frac{|z|^2 - \tau \operatorname{Re} z_j^2}{2(1-\tau^2)}} \sum_{j=0}^{n-1} \frac{\tau^n}{j!} \left| H_j\left(\sqrt{\frac{n}{\tau}}z\right) \right|^2.$$

By letting $\tau \to 0$ in (a):

(b) If $\tau = 0$ (Ginibre's ensemble) then

$$R_1^{(n)}(z) = \frac{n}{\pi} e^{-n|z|^2} \sum_{j=0}^{n-1} \frac{n^j |z|^{2j}}{j!}.$$

By letting $\tau \to 1$ in (a):

(c) if $\tau = 1$ (GUE) then

$$R_1^{(n)}(z) \equiv R^{(n)}(x,y) = \delta(y) \sqrt{\frac{n}{2\pi}} e^{-\frac{n}{2}x^2} \sum_{j=0}^{n-1} \frac{1}{j!} |H_j(\sqrt{n}x)|^2.$$

Limit of infinitely large matrices

Consider matrices $\tilde{J} = X + iY$.

Can have two regimes when $n \to \infty$:

- strong non-Hermiticity $E(\operatorname{tr} Y^2) = O(E(\operatorname{tr} X^2)),$
- weak non-Hermiticity $E(\operatorname{tr} Y^2) = o(E(\operatorname{tr} X^2))$.

If $v^2 > 0$ stays constant as $n \to \infty$, have strongly non-Hermitian $J = \frac{1}{\sqrt{n}} (A + ivB)$.

Recall $\tau = \frac{1-v^2}{1+v^2}$. The following result is a corollary of Theorem (*):

Theorem (Girko's Elliptic Law) For any $\tau \in (-1,1)$ and any bounded $D \subset \mathbf{C}$

$$E(N_D) = n \int_D \int \rho(x, y) dxdy + o(n)$$

where N_D is the number of eigenvalues of J in D and

$$\rho(x,y) = \begin{cases} \frac{1}{\pi(1-\tau^2)}, & \text{when } \frac{x^2}{(1+\tau)^2} + \frac{y^2}{(1-\tau)^2} \le 1\\ 0, & \text{otherwise} \end{cases}$$

(Girko considered matrices J with symmetric pairs (J_{12}, J_{21}) , (J_{13}, J_{31}) , ... drawn independently from a bivariate distribution (not necessarily normal))

Note: $\lim_{\tau \to 1} \lim_{n \to \infty} \neq \lim_{n \to \infty} \lim_{\tau \to 1}$.

Elliptic distribution of eigenvalues

Eigenvalues of 20 **complex matrices** $J=\frac{A}{\sqrt{n}}A+iv\frac{B}{\sqrt{n}}$ of size n=100 represented by dots. Matrices A and B are "drawn" independently from the GUE with normalization $E(\operatorname{tr} A^2)=E(\operatorname{tr} B^2)=n^2$ and v=0.5.

Local scale: area is measured in units of mean density of eigenvalues, i.e. unit area contains, on average, 1 eigenvalue.

Unit area on the global scale is n times unit area on the local scale.

Limit distribution of eigvs of J: uniform in the ellipse

$$\mathcal{E} = \left\{ z : \frac{x^2}{(1+\tau)^2} + \frac{y^2}{(1-\tau)^2} \le 1 \right\}$$

of area $|\mathcal{E}| = \pi \sqrt{1 - \tau^2}$. That is

$$E(N_D) \simeq \frac{|D \cap \mathcal{E}|}{|\mathcal{E}|}.$$

E.g. if $z_0 = x_0 + iy_0 \in \mathcal{E}$ and

$$D = \{z : |x - x_0| \le \frac{\alpha}{2\sqrt{n|\mathcal{E}|}}, |y - y_0| \le \frac{\beta}{2\sqrt{n|\mathcal{E}|}}\}$$

then $E(N_{D_0}) \simeq \alpha \beta$.

But also

$$E(N_D) = \int_D \int R_1^{(n)}(z) d^2z = \int \int \frac{1}{n|\mathcal{E}|} R_1^{(n)} \left(z_0 + \frac{w}{\sqrt{n|\mathcal{E}|}} \right) d^2w$$

Rescaled mean density of eigenvalues (around z_0):

$$\frac{1}{n|\mathcal{E}|} R_1^{(n)} \left(z_0 + \frac{w}{\sqrt{n|\mathcal{E}|}} \right)$$

Similarly, rescaled eigenvalue correlation functions:

$$\widehat{R}_{k}^{(n)}(w_{1},\ldots,w_{k}):=\frac{1}{(n|\mathcal{E}|)^{k}}R_{k}^{(n)}\left(z_{0}+\frac{w_{1}}{\sqrt{n|\mathcal{E}|}},\ldots,z_{0}+\frac{w_{k}}{\sqrt{n|\mathcal{E}|}}\right)$$

The following result is a corollary of Theorem (*):

Theorem For any $\tau \in (-1,1)$ and $z_0 \in int \mathcal{E}$

$$\lim_{n \to \infty} \hat{R}_k^{(n)}(w_1, \dots, w_k) = \det ||K(w_m, \bar{w}_l)||_{m,l=1}^k,$$

where

$$K(w_1, \bar{w}_2) = \exp\left(w_1\bar{w}_2 - \frac{1}{2}|w_1|^2 - \frac{1}{2}|w_2|^2\right)$$

E.g., the first two correlation fncs:

$$\hat{R}_1(w) = K(w, \overline{w}) = 1$$

$$\hat{R}_2(w, w_2) = \hat{R}_1(w_1)\hat{R}_1(w_2) - |K(w_1, \bar{w}_2)|^2$$
$$= 1 - \exp\left(-|w_1 - w_2|^2\right).$$

No dependence on z_0 , and, remarkably, no dependence on au.

Again,

$$\lim_{\tau \to 1} \lim_{n \to \infty} \neq \lim_{n \to \infty} \lim_{\tau \to 1}.$$

Eigenvalues of weakly non-Hermitian matrices

Eigenvalues of 20 **complex matrices** $J=\frac{A}{\sqrt{n}}A+iv\frac{B}{\sqrt{n}}$ of size n=100 represented by dots. Matrices A and B are "drawn" independently from the GUE with normalization $E(\operatorname{tr} A^2)=E(\operatorname{tr} B^2)=n^2$ and v=0.05.

Eigenvalues of weakly non-Hermitian matrices

Eigenvalues of 20 **complex matrices** $J = \frac{A}{\sqrt{n}}A + iv\frac{B}{\sqrt{n}}$ of size n = 100 represented by dots. Matrices A and B are "drawn" independently from the GUE with normalization $E(\operatorname{tr} A^2) = E(\operatorname{tr} B^2) = n^2$ and v = 0.05.

Regime of weak non-Hermiticity

Now consider matrices $J = \frac{A}{\sqrt{n}} + iv\frac{B}{\sqrt{n}}$ in the limit when

$$n \to \infty$$
 and $v^2 n \to \text{const.}$ (3)

May think of eigenvalues of J as of perturbed eigenvalues of $\frac{A}{\sqrt{n}}$. The eigenvalues of $\frac{A}{\sqrt{n}}$ are all real and are distributed in [-2,2] with density

$$\nu_{sc}(x) = \frac{1}{2\pi} \sqrt{4 - x^2}$$
 (Wigner's semicircle law!)

When perturbed they move off [-2,2] into ${\bf C}$ on the distance of the order $\frac{1}{n}$ (first order perturbations). Correspondingly, consider

$$D = \{(x,y) : x \in I \subset [-2,2], \frac{s}{n} \le y \le \frac{t}{n}\}.$$

Then

$$E(N_D) = \int_D \int_{R_1^{(n)}} (x, y) dx dy = \int_{L} dx \int_{s}^{t} d\hat{y} \, \frac{1}{n} R_1^{(n)} \left(x, \frac{\hat{y}}{n} \right),$$

where

$$\hat{y} = ny$$
.

Hence

$$\hat{\rho}^{(n)}(x,\hat{y}) := \frac{1}{n^2} R_1^{(n)} \left(x, \frac{\hat{y}}{n} \right)$$

is the mean density of rescaled (distorted) eigenvalues $\hat{z} = x + i\hat{y} = x + iny$.

The following result is a corollary of Theorem (*).

Theorem (Fyodorov, Khoruzhenko and Sommers)

Let $au=1-rac{lpha^2}{2n}$. Then, under assumption (iv),

$$\lim_{n\to\infty} \hat{\rho}^{(n)}(x,\hat{y}) = \hat{\rho}(x,\hat{y}),$$

where

$$\widehat{\rho}(x,\widehat{y}) = \frac{1}{\pi\alpha} \exp\left(-\frac{2\widehat{y}^2}{\alpha^2}\right) \int_{-\pi\nu_{sc}(x)}^{\pi\nu_{sc}(x)} \exp\left(-\frac{\alpha^2 u^2}{2} - 2u\widehat{y}\right) \frac{du}{\sqrt{2\pi}}.$$

In the limit when $\alpha \to 0$

$$\frac{1}{\sqrt{2\pi}\pi\alpha} \exp\left(-\frac{2\hat{y}^2}{\alpha^2}\right) \to \frac{1}{2\pi}\delta(\hat{y})$$

and

$$\hat{
ho}(x,\hat{y})
ightarrow \delta(\hat{y})
u_{sc}(x)$$
 Wigner's semicircle law

Introduce curvilinear coordinates in the (x, \hat{y}) plane:

$$(x, \tilde{y}) = \left(x, \frac{\hat{y}}{\pi \nu_{sc}(x)}\right).$$

If

$$\tilde{\rho}(x, \tilde{y}) = \frac{1}{\pi \nu_{sc}(x)} \hat{\rho}\left(x, \frac{\hat{y}}{\pi \nu_{sc}(x)}\right)$$

then

$$\tilde{\rho}(x,\tilde{y}) = \nu_{sc}(x)p_x(\tilde{y}),$$

where

$$p_x(\tilde{y}) = \frac{1}{\sqrt{2\pi}a} \exp\left(-\frac{a^2\tilde{y}^2}{2}\right) \int_{-1}^1 \exp\left(-\frac{a^2\tilde{y}^2}{2} - 2t\hat{y}\right) \frac{dt}{\sqrt{2\pi}}$$
 and $a = \pi \nu_{sc}(x)\alpha$.

- Interpretation of $p_x(\tilde{y})$.
- Universality of $p_x(\tilde{y})$.

In the limit when $a \to \infty$ obtain uniform density

$$ilde{
ho}(x, ilde{y}) \simeq \left\{egin{array}{ll} rac{1}{\pi a^2}, & ext{when } | ilde{y}| \leq rac{a^2}{2} \ 0, & ext{otherwise} \end{array}
ight.$$

Eigenvalue correlation functions:

have a crossover from Wigner-Dyson to Ginibre

Weakly non-Hermitian matrices

Histogram of the scaled imaginary parts \tilde{y} of complex eigenvalues of weakly non-Hermitian matrices $J = \frac{A}{\sqrt{n}}A + iv\frac{B}{\sqrt{n}}$ of size n = 30. $v = \frac{1}{\sqrt{n}}$

The solid line is the graph of $p_x(\tilde{y})$ $(n = \infty)$.

For each plot 20000 matrices were generated and diagonalized. Eigenvalues $z_j = x_j + iy_j$ falling into the window, $|x_j| \leq 0.2$, were selected and their imaginary parts y_j were scaled, $\tilde{y}_j = 2\pi\nu_{sc}(0)ny_j$.

For plot (a), the matrices A and A were "drawn" independently from the GUE with normalization $E(\operatorname{tr} A^2) = E(\operatorname{tr} B^2) = n^2/2$.

For plot (b), the entries of A and B were "drawn" from Bernoulli($\frac{1}{2}$).

Another type of weakly non-Hermitian matrices:

• Dissipative matrices: $J=A+i\Gamma,\ \Gamma\geq 0$ and is of finite rank m

Weakly non-unitary matrices:

- Submatrices of size m of unitary matrices of size n, in the limit $n \to \infty$ and m = n a, a is a constant.
- Contractions: random matrices $J=U\sqrt{I-T}$, where $U\in U(n)$ and $0\leq T\leq I$ in the limit when $n\to\infty$ and the rank of T remains finite. (Note that $J^*J=I-T$)

Weakly asymmetric matrices

• J = A + vB, where A and B are real and $A^T = A$, $B^T = -B$.

Part	III	Asymm	etric	Tridi	agonal	Randor	n Mat	rices
							2	4

Imposing periodic boundary conditions:

Problem: Fix a rectangle $K \subset \mathbb{C}$ and let $n \to \infty$. What proportion of eigenvalues of J_n are in K? [Eigenvalue distribution].

Example: $a_j = a$, $b_j = b$, $q_j = q$ for all k and $a, b, q \in \mathbf{R}$. The limit eigenvalue distribution is supported by the ellipse

$$\{(x,y): x=q+(a+b)\cos p, y=(a-b)\sin p, p \in [0,2\pi]\}$$

How will this picture change if allow random fluctuations of a_k , b_k and q_k ? Answer depends on the sign of a_kb_{k-1} .

Consider

$$J_n = \text{tridiag}(a_k, q_k, b_k) + \text{p.b.c.}$$

with positive sub- and super-diagonals:

$$a_k = \exp(\xi_{k-1}), b_k = \exp(\eta_k)$$

Eigenvalues of J_n (n=201) where (a) all non-zero entries are drawn from Uni[0,1]; and (b) the sub-diagonal and diagonal entries are drawn from Uni[0,1] and superdiagonal entries are drawn from Uni $[\frac{1}{2}, 1\frac{1}{2}]$.

Eigenvalues of J_n (n=201) where (a) the sub- and super-diagonal entries are drawn from $\mathrm{Uni}[-\frac{1}{2},\frac{1}{2}]$ and the diagonal entries are drawn from $\mathrm{Uni}[0,1]$; and (b) the sub-diagonal entries are drawn from $\mathrm{Uni}[-\frac{1}{2},\frac{1}{2}]$, and the diagonal and super-diagonal are drawn from $\mathrm{Uni}[0,1]$

Assumptions:

- (I) (ξ_k, η_k, q_k) , k = 0, 1, 2, ..., are independent samples from a probability distribution in \mathbf{R}^3 .
- (II) $E(\ln(1+|q|))$, $E(\xi)$ and $E(\eta)$ are finite.

E.g. (ξ_k, η_k, q_k) , k = 0, 1, 2, ..., are independent samples from a 3D prob. distr. with a compact supp. in \mathbf{R}^3 .

By making use of the similarity transformation $W_n = \text{diag}(w_1, \dots w_n)$, $w_k = \exp\left[\frac{1}{2}\sum_{j=0}^{k-1}(\xi_j - \eta_j)\right]$,

$$W_n^{-1}J_nW_n = H_n + V_n,$$

where

$$H_n = \begin{pmatrix} q_1 & c_1 & & & 0 \\ c_1 & \ddots & \ddots & & \\ & \ddots & \ddots & c_{n-1} \\ 0 & & c_{n-1} & q_n \end{pmatrix} V_n = \begin{pmatrix} 0 & 0 & \dots & 0 & u_n \\ 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & \dots & 0 & 0 \\ v_n & 0 & \dots & 0 & 0 \end{pmatrix}$$

$$c_k=\sqrt{a_{k+1}b_k}=e^{rac{1}{2}(\xi_k+\eta_k)}$$
 and

$$u_n/v_n = e^{n[\mathrm{E}(\xi_0 - \eta_0) + o(1)]}$$
 as $n \to \infty$

rank 2 asymmetric perturb. of symmetric $H_n!$

"Rank 2" \Rightarrow eignv. distbs. of H_n and $H_n + V_n$ are related

"Strongly asymmetric" \Rightarrow non-trivial relation.

Facts from theory of Hermitian random operators:

ullet Empirical distribution fnc. of eigvs. of H_n

$$N(I, H_n) = \frac{1}{n} \# \{ \text{eigvs. of } H_n \text{ in } I \subset \mathbf{R} \}$$

$$= \int_I dN_n(\lambda), \ N_n(\lambda) = N((-\infty, \lambda], H_n)$$

 dN_n assigns mass $\frac{1}{n}$ to each of eigvs. of H_n .

Proposition \exists *nonrandom* $N(\lambda) \forall I \subset \mathbf{R}$:

$$\lim_{n \to \infty} N(I, H_n) \stackrel{\text{a.s.}}{=} \int_I dN(\lambda)$$

- ullet Potentials: $p(z;H_n)=\int \log |z-\lambda| dN_n(\lambda)$ $\Phi(z)=\int \log |z-\lambda| dN(\lambda)$
- Lyapunov exponent $\gamma(z) = \lim_{n \to \infty} \frac{1}{n} E(\ln ||S_n(z)||)$

Proposition (Thouless formula)

$$\lim_{n\to\infty} p(z; H_n) \stackrel{a.s.}{=} \Phi(z) \text{ unif. in } z \text{ on } K \subset \mathbf{C} \setminus \mathbf{R}$$
$$= \gamma(z) + \mathbf{E} \log c_0$$

Corollaries:

 $\Phi(z)$ continuous in z;

$$\Phi(x+iy) > \mathbf{E} \log c_0 \quad \forall y \neq 0;$$
 etc.

Consider

$$\mathcal{L} = \{ z \in \mathbb{C} : \Phi(z) = \max[E(\xi_0), E(\eta_0)] \}$$

This curve is an equipotential line of limiting eigenvalue distribution of H_n .

If the probability law of (ξ_k, η_k, q_k) has bounded support then \mathcal{L} is confined to a bounded set in \mathbf{C} and is a union of closed contours:

There are $\alpha_1 < \beta_1 \le \alpha_2 < \beta_2 \le \ldots$ such that

$$\mathcal{L} = \cup \mathcal{L}_j, \quad \mathcal{L}_j = \{x \pm iy_j(x) : x \in [\alpha_j, \beta_j]\}$$

Notation:

$$N(K, J_n) = \frac{1}{n} \# \{ \text{eigvs. of } J_n \text{ in } K \}, \quad K \subset \mathbf{C}$$

(describes distribution of eigenvalues of J_n)

Theorem (Goldsheid and Khoruzhenko) Assume (I-II). Then, with probability one,

(a)
$$\forall K \subset \mathbf{C} \backslash \mathbf{R}$$
: $N(K,J_n) \xrightarrow[n \to \infty]{} \int\limits_{K \cap \mathcal{L}} \rho(z(s)) ds$

where $\rho(z)=\frac{1}{2\pi}\left|\int \frac{dN(\lambda)}{z-\lambda}\right|$ and ds is the arc-length measure on \mathcal{L} .

(b)
$$\forall I \subset \mathbf{R}$$
: $N(I,J_n) \xrightarrow[n \to \infty]{} \int\limits_{I_{\mathcal{W}}} dN(\lambda)$

where
$$I_W = I \cap \{\lambda : \Phi(\lambda + i0) > \max[E(\xi_0), E(\eta_0)]\}$$

Sketch of proof: Let

$$p(z; J_n) = \frac{1}{n} \sum_{j=1}^{n} \log|z - z_j| = \frac{1}{n} \log|\det(J_n - z)|$$

where z_1, \ldots, z_n are the eigenvalues of J_n .

Claim (convergence of potentials)

With probability one,

 $p(z; J_n) \xrightarrow[n \to \infty]{} F(z) = \max[\Phi(z), E(\xi_0), E(\eta_0)] \quad \forall z \notin \mathbf{R} \cup \mathcal{L}$ The convergence is uniform in $z \in K \subset \mathbf{C} \setminus (\mathbf{R} \cup \mathcal{L})$.

Consider measures $d\nu_{J_n}$ assigning mass $\frac{1}{n}$ to each of the eigenvalues of J_n . Then

$$\frac{1}{2\pi}\Delta p(z;J_n) = d\nu_{J_n}$$

in the sense of distribution theory. By Claim, the potentials $p(z; J_n)$ converge for almost all $z \in \mathbb{C}$. This implies convergence in the sense of distribution theory. Since the Laplacian is continuous in \mathcal{D}' ,

$$\frac{1}{2\pi}\Delta p(z;J_n) \to \frac{1}{2\pi}\Delta F(z)$$

in \mathcal{D}' . But then

$$d
u_{J_n}
ightarrow d
u \equiv rac{1}{2\pi} \Delta F(z)$$

in the sense of of weak convergence of measures, hence Theorem.

Proof of Claim

$$\det(J_n - z) = \det(H_n + V_n - z)$$

= $\det(H_n - z) \det(I_n + V_n(H_n - z)^{-1})$

Therefore

$$p(z; J_n) = p(z; J_n) + \frac{1}{n} \log |d_n(z)|.$$

 V_n is rank 2. $V_n = A^T B$, where

$$A = \begin{pmatrix} u_n & 0 & \dots & 0 & 0 \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix} B = \begin{pmatrix} 0 & 0 & \dots & 0 & 1 \\ v_n & 0 & \dots & 0 & 0 \end{pmatrix}$$

$$\therefore d_n(z) = \det(I_n + A^T B(H_n - z)^{-1})$$

$$= \det(I_2 + B(H_n - z)^{-1} A^T) \ 2 \times 2 \det$$

$$= (1 + u_n G_{1n}) (1 + v_n G_{n1}) - u_n v_n G_{11} G_{nn}$$

where G_{lk} is the (k,l) entry of $(H_n-z)^{-1}$.

Now use

$$|u_n G_{1n}| = e^{n[E(\xi_0) - \Phi(z) + o(1)]}$$

 $|v_n G_{n1}| = e^{n[E(\eta_0) - \Phi(z) + o(1)]}$

and $|1 - u_n v_n G_{11} G_{nn}| \ge \alpha(z) > 0$, $z \notin \mathbf{R}$ to complete the proof.

Exactly solvable model

Consider $J_n = \text{tridiag}(e^g, \text{Cauchy}(0, b), e^{-g}) + \text{p.b.c.},$

$$\xi_k \equiv g, \quad \eta_k \equiv -g \quad P(q_k \in I) = \frac{1}{\pi} \int_I dq \frac{b}{q^2 + b^2}$$

In this case $J_n = W_n^{-1}(H_n + V_n)W_n$, where

 $H_n={\sf tridiag}(1,\,{\sf Cauchy}(0,b),\,1)$ Lloyd's model For Lloyd's model an explicit expression for $\Phi(z)$ is available:

4 cosh $\Phi(z) = \sqrt{(x+2)^2 + (b+|y|)^2} + \sqrt{(x-2)^2 + (b+|y|)^2}$ By making use of it,

- If $K=2\cosh g \leq K_{cr}=\sqrt{4+b^2}$ then $\mathcal L$ is empty.
- If $K > K_{cr}$ then $\mathcal L$ consists of two symmetric arcs

$$y(x) = \pm \left[\sqrt{\frac{(K^2 - 4)(K^2 - x^2)}{K^2}} - b \right] - x_b \le x \le x_b$$

 x_b is determined by $y(x_b) = 0$.

Corollaries

 $g = \frac{1}{2}E(\xi_0 - \eta_0)$ is a measure of asymmetry of J_n .

(1) Special case: Suppose that $q_k \equiv Const$ all k. Then $\gamma(0) = 0$ and $\gamma(z) > 0 \ \forall z \neq 0$. Since

$$\Phi(0) = \gamma(0) + \frac{1}{2}E(\xi_0 + \eta_0) < \max[E(\xi_0), E(\eta_0)]$$

the equation for \mathcal{L} , $\Phi(z) = \max[E(\xi_0), E(\eta_0)]$, has continuum of solutions for any $g \neq 0$.

For any $g \neq 0$ we have a bubble of complex eigv. around z = 0, i.e. no matter how small the perturb. V_n is, it moves a finite proportion of eigvs. of H_n off the real axis!

(2) Suppose now that the diagonal entries q_k are random. Then $\gamma(x) > 0 \ \forall x \in \mathbf{R}$ (Furstenberg) and

$$0 < \min_{x \in \Sigma} \gamma(x) = g_{\text{Cr}}^{(1)} < g_{\text{Cr}}^{(2)} = \max_{x \in \Sigma} \gamma(x) \le +\infty$$

where Σ is the support of $dN(\lambda)$. Therefore

- (a) If $|g| < g_{\rm Cr}^{(1)}$, J_n has zero proportion of non-real eigenvalues
- (b) If $g_{\rm Cr}^{(1)} < |g| < g_{\rm Cr}^{(2)}$, J_n has finite proportions of real and non-real eigenvalues.
- (c) $|g| > g_{\text{Cr}}^{(2)}$, J_n has zero proportion of real eigenvalues.

A few elementary facts from potential theory.

Suppose that M_n is an $n \times n$ matrix. Denote by $d\nu_{M_n}$ the measure on ${\bf C}$ that assigns to each of the n eigenvalues of M_n the mass $\frac{1}{n}$. Its potential is given by

$$egin{array}{lcl} p(z;M_n) &=& rac{1}{n}\log|\det(M_n-zI_n)| \ &=& \int_{\mathcal{C}}\log|z-\zeta|d
u_{\!\scriptscriptstyle M_n}(\zeta) \end{array}$$

 $p(z; M_n)$ is locally integrable in z and for any sufficiently smooth function f(z) with compact support

$$\int_{\mathcal{C}} \log |z - \zeta| \Delta f(z) d^2 z = \lim_{\varepsilon \downarrow 0} \int_{|z - \zeta| \ge \varepsilon} \log |z - \zeta| \Delta f(z) d^2 z$$
$$= 2\pi f(\zeta),$$

by Green's formula. Hence

$$rac{1}{2\pi}\int_{\mathrm{C}}p(z;M_n)\Delta f(z)d^2z=\int_{\mathrm{C}}f(z)d
u_{\scriptscriptstyle M_n}\!(z).$$

Both $p(z;M_n)$ and $d\nu_{M_n}$ define distributions in the sense of the theory of distributions and the equation above can be also read as the equality $d\nu_{M_n}(z)=\frac{1}{2\pi}\Delta p(z;M_n)$ where now Δ is the distributional Laplacian. More generally, it is proved in potential theory that, under appropriate conditions on $d\nu$, $d\nu(z)=\frac{1}{2\pi}\Delta p(z)$, where $p(z)=\int \log|z-\zeta|d\nu_{M_n}(\zeta)$ is the potential of $d\nu$. This Poisson's equation relates measures and their potentials.

Regularization of potentials

$$p_{\varepsilon}(z;J_n) = \frac{1}{2n} \log \det[(J_n - z)(J_n - z)^* + \varepsilon^2]$$

$$\frac{1}{2\pi} \Delta p_{\varepsilon}(z; J_n) = \rho_{\varepsilon}(z; J_n)$$

$$\Rightarrow \frac{1}{n} \sum \delta(z - z_j) \quad [n \text{ is finite}]$$

$$\lim_{\varepsilon \to 0} \lim_{n \to \infty} p_{\varepsilon}(z; J_n) = \lim_{n \to \infty} \lim_{\varepsilon \to 0} p_{\varepsilon}(z; J_n)$$
 ??

Yes, for normal matrices. Counterexamples for nonnormal matrices

In the vicinity of z_j :

$$ho_{arepsilon}(z;J_n) \ \ riangleq \ \ rac{(\kappa_j arepsilon)^2}{\pi} \, rac{1}{[(\kappa_j arepsilon)^2 + |z-z_j|^2]^2} \
ightarrow \ \delta(z-z_j) \ \ \ ext{if} \ \kappa_j
eq 0$$

where $\kappa_j = |(\psi_j^L, \psi_j^R)^{-1}|$ and $\psi_j^{L(R)}$ are normalized left (right) eigevectors at z_j .

Spectral condition numbers, pseudospectra, etc.