MAS224, Actuarial Mathematics: Solutions to Problem Sheet 4.

- 1*. Calculations for the table use:
 - \diamond $l_0 = 1,000$ and $l_{x+1} = l_x p_x$ for x = 0, 1, 2, 3, 4.
 - $\diamond \qquad d_x = l_x l_{x+1} \text{ for } x = 0, 1, 2, 3, 4.$
 - $\diamond \qquad q_x = 1 p_x \text{ for } x = 0, 1, 2, 3, 4.$
 - ♦ $e_x = (l_{x+1} + ... + l_4)/l_x$ and $\mathring{e}_x \approx e_x + 0.5$ for x = 0, 1, 2, 3. Note that a beetle age 4 can't survive a whole further year so $e_4 = 0$ and $\mathring{e}_x = 0.5$.

x	l_x	d_x	p_x	q_x	$\operatorname{\check{e}}_x$	x
0	1000	100	0.9	0.1	1.949	0
1	900	450	0.5	0.5	1.111	1
2	450	360	0.2	0.8	0.72	2
3	90	81	0.1	0.9	0.6	3
4	9	9	0	1	0.5	4

$$\diamond \qquad {}_{3}p_1 = \frac{l_4}{l_1} = \frac{9}{900} = 0.01$$

$$\diamond \qquad _2q_2 = \frac{l_2 - l_4}{l_4} = \frac{450 - 9}{450} = 0.98$$

$$\diamond \qquad {}_{2|1}q_1 = \frac{l_3 - l_4}{l_1} = \frac{90 - 9}{900} = 0.09$$

♦ K(1) takes values 0,1,2,3 since a beetle aged 1 is dead by age 5 (and so can at most live 3 complete further years). Now $P(K(1) = k) = {}_{k}p_{1} - {}_{k+1}p_{1} = {}_{l_{1}}^{l_{k+1}-l_{k+2}}$, so

$$P(K(1) = 0) = \frac{l_1 - l_2}{l_1} = \frac{450}{900} = 0.5,$$

$$P(K(1) = 1) = \frac{l_2 - l_3}{l_1} = \frac{360}{900} = 0.4,$$

$$P(K(1) = 2) = \frac{l_3 - l_4}{l_1} = \frac{81}{900} = 0.09,$$

$$P(K(1) = 3) = \frac{l_4 - l_5}{l_1} = \frac{9}{900} = 0.01$$

2*. (a) P(man aged 60 dies during the next five years) is just ${}_{5}q_{60} = \frac{l_{60} - l_{65}}{l_{60}} = \frac{78924 - 68490}{78924} = 0.1322$ (b) P(man aged 40 dies by age 65) is just ${}_{25}q_{40} = \frac{l_{40} - l_{65}}{l_{40}} = \frac{93790 - 68490}{93790} = 0.2698$

- (c) P(man aged 20 survives to age 50 but dies before age 60) is just $_{30|10}q_{20} = \frac{l_{50}-l_{60}}{l_{20}} = \frac{90085-78924}{96293} = 0.1159$
- (d) The expected number of deaths of men within 1 year of retirement at age 65 out of 100,000 newborns is just $d_{65} = 2499$

Alternatively the probability that a newborn dies between 65 and 66 is $S(65) - S(66) = (l_{65} - l_{66})/l_0 = d_{65}/100,000$. The number dying has binomial distribution with n parameter 100,000 and this probability as p parameter. So expected number is $100,000d_{65}/100,000$ which is same result as above.

- (e) The expected number alive at age 30 out of 100,000 newborns is just l_{30} , so the expected number dead by age 30 is just $100,000 l_{30}$. So if it is out of 1,000 you just scale by 1,000/100,000 = 0.01 giving 0.01(100,000 95265) = 47.35Alternatively, the number of men who die by age 30 out of 1,000 newborns has binomial distribution with parameters 1,000 and ${}_{30}q_0$. So the expected number is just $1,000_{30}q_0 = 1,000\frac{l_0-l_{30}}{l_0} = \frac{1,000(100,000-95265)}{100,000} = 47.35$
- (f) The number of men who will survive to age 65 out of 1,000 who are aged 50 now has binomial distribution parameters 1000 and ${}_{15}p_{50}$, so the expected number is just $1000_{15}p_{50} = 1000\frac{l_{65}}{l_{50}} = \frac{1000(68490)}{90085} = 760.2820$

3. $S(x) = 1 - \frac{x^2}{36}$ for $0 \le x \le 6$. (a) $p_x = \frac{S(x+1)}{S(x)} = \frac{36 - (x+1)^2}{36 - x^2}, q_x = 1 - p_x, l_x = l_0 S(x) = 100(36 - x^2)$ and $d_x = l_x - l_{x+1}$. Also $e_x = \frac{1}{l_x} (l_{x+1} + \dots + l_5)$ for $x = 0, \dots, 4$.

	Year	p_x	q_x	l_x	d_x	e_x
	0	35/36	1/36	3,600	100	12500/3600=3.4722
	1	32/35	3/35	3,500	300	9000/3500=2.5714
	2	27/32	5/32	3,200	500	5800/3200=1.8125
	3	20/27	7/27	2700	700	3100/2700=1.1481
	4	11/20	9/20	2000	900	1100/2000=0.55
	5	0	1	1100	1100	0
· -5	f'(x)	2r c	0	0		

(b)
$$\mu(x) = \frac{-S'(x)}{S(x)} = \frac{2x}{36-x^2}$$
 for $0 < x < 6$.
(c) For $0 \le x < 6$,

$$\stackrel{\circ}{\mathsf{e}}_{x} = \frac{1}{36-x^{2}} \int_{0}^{6-x} (36 - (x+t)^{2}) dt$$

$$= \frac{1}{36-x^{2}} \left[36t - \frac{(x+t)^{3}}{3} \right]_{t=0}^{t=6-x}$$

$$= \frac{36(6-x) - (1/3)(6^{3}-x^{3})}{36-x^{2}}$$

$$= \frac{(6-x)(108 - (x^{2}+6x+36))}{3(36-x^{2})}$$

$$= \frac{72 - 6x - x^{2}}{3(6+x)}$$

$$= \frac{(6-x)(12+x)}{3(6+x)}$$

4*.

$$\mathbf{e}_x = \frac{1}{l_x} \sum_{r=1}^{\infty} l_{x+r} = \frac{l_{x+1} + l_{x+2} + \dots}{l_x}$$

$$1 + \mathbf{e}_{x+1} = 1 + \frac{1}{l_{x+1}} \sum_{r=1}^{\infty} l_{x+1+r} = \frac{1}{l_{x+1}} \left(l_{x+1} + \sum_{r=1}^{\infty} l_{x+r+1} \right) = \frac{l_{x+1} + l_{x+2} + l_{x+3} + \dots}{l_{x+1}}$$

So $e_x = \frac{l_{x+1}}{l_x}(1 + e_{x+1}) = p_x(1 + e_{x+1})$. The result that $e_x \le (1 + e_{x+1})$ then immediately follows since $p_x \le 1$.

Thus $e_x = 1 + e_{x+1}$ when $p_x = 1$, i.e. if a life aged x is certain to survive the next year.

5*. For the survival function we have $s(x) = e^{-\int_0^x \mu(u)du}$. If $\mu(x) = 2/(50 - x)$ then $-\int_0^x \mu(u)du = 2\ln(50 - x) - 2\ln(50)$ for $0 \le x < 50$. Hence $s(x) = \left(\frac{50-x}{50}\right)^2$ for $0 \le x < 50$. Since s(x) is a decreasing function of x, and s(x) tends to 0 as x tends to 50, s(x) = 0 for x = 50 and beyond.

The p.d.f. of T(x) is given by the formula

$$f_{T(x)}(t) = -\frac{s'(x+t)}{s(x)}.$$

If
$$s(x) = \left(\frac{50-x}{50}\right)^2$$
 for $0 \le x < 50$ then $s'(x) = -\frac{2}{50} \left(\frac{50-x}{50}\right)$,
 $s'(x+t) = -\frac{2}{50} \left(\frac{50-x-t}{50}\right), 0 \le t < 50$,

and

$$f_{T(x)}(t) = \frac{2(50 - x - t)}{(50 - x)^2}, \quad 0 \le t < 50 - x.$$

 $f_{T(x)}(t)$ vanishes for t > 50 - x because no individual lives beyond 50 years. We have two formulae to choose from for the evaluation of $\mathring{e}_x = E(T(x))$:

$$\mathring{\mathbf{e}}_x = \int_0^\infty t f_{T(x)}(t) dt$$
 or $\mathring{\mathbf{e}}_x = \frac{1}{s(x)} \int_0^\infty s(x+t) dt$

The second one involves fewer calculations. Note that there is a cut off in the integral at t = 30, as s(20 + t) = 0 for t > 30.

$$\mathring{\mathbf{e}}_{20} = \frac{1}{s(20)} \int_0^{30} s(20+t)dt = \frac{1}{(30)^2} \int_0^{30} (30-t)^2 dt = \frac{1}{(30)^2} \frac{(30)^3}{3} = 10$$

Thus $\mathring{e}_{20} = 10$, i.e. the complete expectation of further life at age 20 is 10 years.