MAS224, Actuarial Mathematics: Solutions to Problem Sheet 4.

1*. Calculations for the table use:

- $l_0 = 1,000 \text{ and } l_{x+1} = l_x p_x \text{ for } x = 0, 1, 2, 3, 4.$
- $\diamond \qquad d_x = l_x l_{x+1} \text{ for } x = 0, 1, 2, 3, 4.$
- $\diamond \qquad q_x = 1 p_x \text{ for } x = 0, 1, 2, 3, 4.$
- ♦ $e_x = (l_{x+1} + ... + l_4)/l_x$ and $\mathring{e}_x \approx e_x + 0.5$ for x = 0, 1, 2, 3. Note that a beetle age 4 can't survive a whole further year so $e_4 = 0$ and $\mathring{e}_x = 0.5$.

AL	i mark for columns	ead or l,d,q,ë

0

x	l_x	d_x	p_x	q_x	$\operatorname{\check{e}}_x$	x
0	1000	100	0.9	0.1	1.949	0
1	900	450	0.5	0.5	1.111	1
2	450	360	0.2	0.8	0.72	2
3	90	81	0.1	0.9	0.6	3
4	9	9	0	1	0.5	4

AI	6	\$	$_{3}p_{1} = \frac{l_{4}}{l_{1}} = \frac{9}{900} = 0.01$
AI .		\$	$_{2}q_{2} = \frac{l_{2} - l_{4}}{l_{4}} = \frac{450 - 9}{450} \neq 0.98$
		\diamond	$_{2 1}q_1 = \frac{l_3 - l_4}{l_1} = \frac{90 - 9}{900} = 0.09$

K(1) takes values 0,1,2,3 since a beetle aged 1 is dead by age 5 (and so can at most live 3 complete further years). Now $P(K(1) = k) = {}_{k}p_{1} - {}_{k+1}p_{1} = {}_{l_{1}+1} - {}_{l_{1}+2} - {}_{l_{1}+2}$, so

A) for range
$$P(K(1) = 0) = \frac{l_1 - l_2}{l_1} = \frac{450}{900} = 0.5,$$

 $P(K(1) = 1) = \frac{l_2 - l_3}{l_1} = \frac{360}{900} = 0.4,$
A) for prob⁵. $P(K(1) = 2) = \frac{l_3 - l_4}{l_1} = \frac{81}{900} = 0.09$
 $P(K(1) = 3) = \frac{l_4 - l_5}{l_1} = \frac{9}{900} = 0.01$

(a) P(man aged 60 dies during the next five years) is just ${}_{5}q_{60} = \frac{l_{60} - l_{65}}{l_{60}} = \frac{78924 - 68490}{78924} = 0.1322$ (b) P(man aged 40 dies by age 65) is just ${}_{25}q_{40} = \frac{l_{40} - l_{65}}{l_{40}} = \frac{93790 - 68490}{93790} = 0.2698$

(c) P(man aged 20 survives to age 50 but dies before age 60) is just $_{30|10}q_{20} = \frac{l_{50}-l_{60}}{l_{20}} = \frac{90085-78924}{96293} = 0.1159$

(d) The expected number of deaths of men within 1 year of retirement at age 65 out of 100,000 newborns is just $d_{65} = 2499$

Alternatively the probability that a newborn dies between 65 and 66 is $S(65) - S(66) = (l_{65} - l_{66})/l_0 = d_{65}/100,000$. The number dying has binomial distribution with n parameter 100,000 and this probability as p parameter. So expected number is $100,000d_{65}/100,000$ which is same result as above.

(e) The expected number alive at age 30 out of 100,000 newborns is just l_{30} , so the expected number dead by age 30 is just $100,000 - l_{30}$. So if it is out of 1,000 you just scale by 1,000/100,000 = 0.01 giving 0.01(100,000 - 95265) = 47.35

Alternatively, the number of men who die by age 30 out of 1,000 newborns has binomial distribution with parameters 1,000 and ${}_{30}q_0$. So the expected number is just 1,000 ${}_{30}q_0 = 1,000 \frac{l_0 - l_{30}}{l_0} = \frac{1,000(100,000 - 95265)}{100,000} = 47.35$

A) \leftarrow (f) The number of men who will survive to age 65 out of 1,000 who are aged 50 now has binomial distribution parameters 1000 and ${}_{15}p_{50}$, so the expected number is just $1000_{15}p_{50} = 1000 \frac{l_{65}}{l_{50}} = \frac{1000(68490)}{90085} = 760.2820$

35/36 32/35 3/35 3,500 1 300 9000/3500=2.5714 2 27/32 5/32 3,200 500 5800/3200=1.8125 noment 3 20/27 7/27 700 2700 3100/2700=1.1481 here 4 11/20 9/20 2000 900 1100/2000=0.55 5 0 1 1100 1100 0 (b) $\mu(x) = \frac{-S'(x)}{S(x)} = \frac{2x}{36-x^2}$ for 0 < x < 6. (c) For $0 \le x < 6$, $\mathring{e}_{x} = \frac{1}{36-x^2} \int_{0}^{6-x} (36-(x+t)^2) dt$ $= \frac{1}{36-x^2} \left[36t - \frac{(x+t)^3}{3} \right]_{t=0}^{t=6-x}$ $= \frac{36(6-x) - (1/3)(6^3 - x^3)}{36-x^2}$ $= \frac{(6-x)(108-(x^2+6x+36))}{3(36-x^2)}$ $= \frac{72-6x-x^2}{3(6+x)}$ $=\frac{(6-x)(12+x)}{3(6+x)}$ 4*. $\mathbf{e}_{x} = \frac{1}{l_{x}} \sum_{r=1}^{\infty} l_{x+r} = \frac{l_{x+1} + l_{x+2} + \dots}{l_{x}}$ $1 + e_{x+1} = 1 + \frac{1}{l_{x+1}} \sum_{r=1}^{\infty} l_{x+1+r} = \frac{1}{l_{x+1}} \left(l_{x+1} + \sum_{r=1}^{\infty} l_{x+r+1} \right) = \frac{l_{x+1} + l_{x+2} + l_{x+3} + \dots}{l_{x+1}}$

(a) $p_x = \frac{S(x+1)}{S(x)} = \frac{36 - (x+1)^2}{36 - x^2}, q_x = 1 - p_x, l_x = l_0 S(x) = 100(36 - x^2)$ and $d_x = l_x - l_{x+1}$. Also $e_x = \frac{1}{l_x} (l_{x+1} + \dots + l_5)$ for $x = 0, \dots, 4$.

 d_x

100

 e_x

12500/3600=3.4722

 l_x

3,600

 q_x

1/36

3. $S(x) = 1 - \frac{x^2}{36}$ for $0 \le x \le 6$.

Year

0

 p_x

 $M \in So[e_x = \frac{l_{x+1}}{l_x}(1 + e_{x+1})] = p_x(1 + e_{x+1}).$ The result that $e_x \le (1 + e_{x+1})$ then immediately follows since $p_x \le 1$. $M = \begin{cases} So[e_x = \frac{l_{x+1}}{l_x}(1 + e_{x+1})] = p_x(1 + e_{x+1}).$ The result that $e_x \le (1 + e_{x+1})$ then immediately follows since $p_x \le 1$. $M = \begin{cases} So[e_x = \frac{l_{x+1}}{l_x}(1 + e_{x+1})] = p_x(1 + e_{x+1}).$ The result that $e_x \le (1 + e_{x+1})$ then immediately follows since $p_x \le 1$. $M = \begin{cases} So[e_x = \frac{l_{x+1}}{l_x}(1 + e_{x+1})] = p_x(1 + e_{x+1}).$ The result that $e_x \le (1 + e_{x+1})$ then immediately follows since $p_x \le 1$. $M = \begin{cases} So[e_x = \frac{l_{x+1}}{l_x}(1 + e_{x+1})] = p_x(1 + e_{x+1}).$ The result that $e_x \le (1 + e_{x+1})$ then immediately follows since $p_x \le 1$. $M = \begin{cases} So[e_x = \frac{l_{x+1}}{l_x}(1 + e_{x+1})] = p_x(1 + e_{x+1}).$ The result that $e_x \le (1 + e_{x+1})$ then immediately follows since $p_x \le 1$. $M = \begin{cases} So[e_x = \frac{l_{x+1}}{l_x}(1 + e_{x+1})] = p_x(1 + e_{x+1}).$ The result that $e_x \le (1 + e_{x+1})$ then immediately follows since $p_x \le 1$. $M = \begin{cases} So[e_x = \frac{l_{x+1}}{l_x}(1 + e_{x+1})] = p_x(1 + e_{x+1}).$ The result that $e_x \le (1 + e_{x+1})$ then immediately follows since $p_x \le 1$. $M = \begin{cases} So[e_x = \frac{l_{x+1}}{l_x}(1 + e_{x+1})] = p_x(1 + e_{x+1}).$ The result that $e_x \le (1 + e_{x+1})$ then immediately follows since $p_x \le 1$. $M = \begin{cases} So[e_x = \frac{l_{x+1}}{l_x}(1 + e_{x+1})] = p_x(1 + e_{x+1}).$ The result that $e_x \le (1 + e_{x+1})$ then immediately follows since $p_x \le 1$. $M = \begin{cases} So[e_x = \frac{l_{x+1}}{l_x}(1 + e_{x+1})] = p_x(1 + e_{x+1}).$ The result that $e_x \le 1$ the follows since $p_x \le 1$. $M = \begin{cases} So[e_x = \frac{l_{x+1}}{l_x}(1 + e_{x+1})] = p_x(1 + e_{x+1}).$ The result that $e_x \le 1$. $M = \begin{cases} So[e_x = \frac{l_{x+1}}{l_x}(1 + e_{x+1})] = p_x(1 + e_{x+1}).$ The result that $e_x \le 1$. $M = \begin{cases} So[e_x = \frac{l_{x+1}}{l_x}(1 + e_{x+1})] = p_x(1 + e_{x+1}).$ The result that $e_x \le 1$. $M = \begin{cases} So[e_x = \frac{l_{x+1}}{l_x}(1 + e_{x+1})] = p_x(1 + e_{x+1}).$ The result that $e_x \le 1$. $M = \begin{cases} So[e_x = \frac{l_{x+1}}{l_x}(1 + e_{x+1})] = p_x(1 + e_{x+1})$ formula S(x)with the set of Al accept 0221250 The p.d.f. of T(x) is given by the formula

$$M1 \quad \text{formule for fiber} \qquad f_{T(x)}(t) = -\frac{s'(x+t)}{s(x)}. \qquad \text{accept if we} \\ f_{T(x)}(t) = -\frac{s'(x+t)}{s(x)}. \qquad f_{T(x)}(t) = +p_x \text{ fiberty} \\ f_{T(x)}(t) = -\frac{2}{50} \left(\frac{50-x}{50}\right), \qquad f_{T(x)}(t) = +p_x \text{ fiberty} \\ s'(x+t) = -\frac{2}{50} \left(\frac{50-x-t}{50}\right), \quad 0 \le t < 50,$$

and
A2
$$\leftarrow$$
 crecent if sugs
 $f_{T(x)}(t) = \frac{2(50 - x - t)}{(50 - x)^2}, \quad 0 \le t < 50 - x.$

 $f_{T(x)}(t)$ vanishes for t > 50 - x because no individual lives beyond 50 years. We have two formulae to choose from for the evaluation of $\mathring{e}_x = E(T(x))$:

M) formula for
$$e_{\chi}$$
 $e_{x} = \int_{0}^{\infty} t f_{T(x)}(t) dt$ or $e_{x} = \frac{1}{s(x)} \int_{0}^{\infty} s(x+t) dt$

The second one involves fewer calculations. Note that there is a cut off in the integral at t = 30, as s(20 + t) = 0 for t > 30.

$$\mathring{e}_{20} = \frac{1}{s(20)} \int_0^{30} s(20+t)dt = \frac{1}{(30)^2} \int_0^{30} (30-t)^2 dt = \frac{1}{(30)^2} \frac{(30)^3}{3} = 10.$$

A l Thus $\hat{e}_{20} = 10$, i.e. the complete expectation of further life at age 20 is 10 years.