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LECTURE 10
The Expectation of Life

Recall:
X is the time-until-death for newborn.
T (x) is the time-until-death for (x) (or, equivalently, the future lifetime at age x)

If the probability distribution of X is known (or, equivalently, the survival function) then the probabil-
ity distribution of T (x) can be obtained by the conditioning of the distribution of X − x by the event
X > x:

fT (x)(t) =
fX(x+ t)

s(x)
=

− d
dt s(x+ t)

s(x)
[see Lecture 7, formula (k)]

Alternatively,
fT (x)(t) = t pxμ(x+ t).

This formula contains no reference to conditioning and can be used when the survival probabilities
and the force of mortality are known from age x onwards.

Aside:-
t px is the probability that (x) survives further t years,
μ(x+ t)dt is the probability that (x+ t) dies within a fraction of time dt.

Hence,
t pxμ(x+ t)dt can be interpreted in words as “the probability that (x) survives further

t years, i.e. to age (x+ t), and then dies instantly”.

The Complete Expectation of Life

The expected value of the time-until-death for (x) is called the complete-expectation-of-life at age x

and is denoted by e
◦

x:

e
◦

x =
def.

E(T (x)) =
∫ ∞

0
t fT (x)(t)dt

=
∫ ∞

0
t t pxμ(x+ t)dt

There is a simpler expression for e
◦

x:

e
◦

x =
∫ ∞

0
t px dt. (1)

To derive it notice that

d

dt
(t px) =

d

dt

s(x+ t)
s(x)

=
s(x+ t)

s(x)

d
dt s(x+ t)
s(x+ t)

= −t px μ(x+ t)
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Therefore, applying integration by parts

e
◦

x =
∫ ∞

0
t t pxμ(x+ t)dt = −

∫ ∞

0
t d(t px) = −t t px

∣∣∣∞

0
+

∫ ∞

0
t px dt (2)

Any realistic survival function will satisfy limt→∞ ts(x+t) = 0, or, equivalently, limt→∞ t t px = 0. (For
human populations s(x) should vanish at all for sufficiently large ages, s(x) = 0 for all x > 150, say).
Therefore t t px

∣∣∣∞

0
= 0 and we obtain Eq. (1) from Eq. (2).

Example. Exponentially distributed lifetime, X ∼ Exp(λ)

s(x) = e−λx, μ(x) = − d
dx

lns(x) = λ, and t px = s(x+t)
s(x) = e−λt .

e
◦

x =
∫ ∞

0
t px dt =

∫ ∞

0
e−λtdt =

1
λ

is independent of age x (and coincides with E(X)). Hence using an exponential distribution over the
entire lifespan is doubtful when a human population is concerned (however, exponential distributions
can be applied over small age intervals).

The Curtate Expectation of Life

T (x) is a continuous-type random variable. It expresses the exact time-until-death for (x). One can
also associate with the future lifetime of (x) a discrete-type random variable. This discrete-type
random variable is the number of years completed by (x) prior to death and is denoted by K(x). Its
probability mass function can be easily computed:

P( K(x) = k ) = P(k ≤ T (x) < k +1)
= P(k < T (x) ≤ k +1) [by (j) from Lecture 7]
= P(T (x) > k)−P(T (x) > k +1)
= k px − k+1 px.

The expected value of K(x) is called the curtate-future-lifetime of (x) and is denoted by ex,

ex = E( K(x) ) =
∞

∑
k=0

k P(K(x) = k)

=
∞

∑
k=0

k k px −
∞

∑
k=0

k k+1 px

=
∞

∑
k=1

k k px −
∞

∑
k=1

(k−1) k px

Therefore (cf. with Eq. (1))

ex =
∞

∑
k=1

k px. (3)
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By its definition, K(x) satisfies the inequalities K(x) ≤ T (x) ≤ K(x)+ 1, hence taking expectations
E(K(x)) ≤ E(T (x)) ≤ E(K(x))+1 and therefore for all ages x

ex ≤ e
◦

x ≤ ex +1.

Though e
◦

x and ex are related, there is no explicit relationship expressing one through the other.

However,
e
◦

x � ex + 1/2. (4)

This approximate relation can be obtained by using linear interpolation. Indeed,

e
◦

x =
∫ ∞

0
t px dt =

∞

∑
k=0

∫ k+1

k
t px dt

=
∞

∑
k=0

∫ 1

0
k+u px du

�
∞

∑
k=0

[
k px

∫ 1

0
(1−u)du+ k+1 px

∫ 1

0
udu

]

assuming linear interpolation

k+u px � k px (1−u)+ k+1 pxu for all 0 ≤ u ≤ 1 and integer k.

Therefore

e
◦

x � 1
2

∞

∑
k=0

k px +
1
2

∞

∑
k=0

k+1 px =
1
2

(
1+

∞

∑
k=1

k px

)
+

1
2

∞

∑
k=1

k px =
1
2

+
∞

∑
k=1

k px = ex +
1
2
.

SUMMARY.

Complete Expectation of Life: e
◦

x = E(T (x)),
where T (x) is the time-until-death for a person age x:

e
◦

x =
∫ ∞

0
t px dt =

1
s(x)

∫ ∞

0
s(x+ t)dt.

Curtate Expectation of Life: ex = E(K(x)), where K(x) is
the number of years completed by (x) prior to death:

ex =
∞

∑
k=1

k px.

Approximate relationship: e
◦

x � ex + 1/2
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LECTURE 11
Life Tables

Random Survivorship Group

Consider a group of l0 newborns whom we label by j, j = 1, . . . , l0. Let Xj be the time-until-death for
newborn j.

How many of the group will survive to age x? Denote this number by N (x):

N (x) =
l0

∑
j=1

11 j,

where 11 j is the indicator for the survival of newborn j,

11 j =
{

1 if newborn j survives to age x

0 otherwise

Assume that Xj for all j has a common distribution specified by survival function s(x). Then 11 j ∼
Bernoulli(p) where p = P(X > x) = s(x) for all j and E(11 j) = s(x).

Therefore the expected number of survivors to age x from the group is

E(N (x)) = E

(
l0

∑
j=1

11 j

)
=

l0

∑
j=1

E(11 j) = l0s(x).

Under the assumption that 11 j, j = 1, . . . , l0, are mutually independent, L(x) ∼ Bin(l0,s(x)).

Notation:-

the expected number of survivors to age x in a group of l0 newborns is denoted by the
symbol lx,

lx = l0s(x); l0 is called the radix;

the expected number of deaths between ages x and x+ t is denoted by tdx,

tdx = lx − lx+t ;

when t = 1 the prefix t is omitted, dx ≡ 1dx.

Life Tables

Tables containing estimates (or “observed” values ) of the values of life-table functions for integer

ages are called the life tables.

The first life table was published in 1693 by Edmund Halley, who based his table on the register of
births and deaths of the city of Breslau (now Wrocław).
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Edmund Halley, (b. 1656 – d. 1742), English astronomer and mathematician, was the first person to calculate
the orbit of a comet which known now as Halley’s Comet. (Also published the 1st meteorogical chart (contained
the distribution of prevailing winds over oceans) and the 1st magnetic charts of the Atlantic and Pacific areas.)

lx, dx, px, qx, and e
◦

x are examples of the life-table functions. These functions are usually included in
any life table.

Note the relationships (x is an integer):

px =
lx+1

lx
the probability that (x) survives to age x+1

qx =
lx − lx+1

lx
the probability that (x) dies before attaining age x+1

dx = lx − lx+1 the expected number dying aged x last birthday from l0 newborns

ex =
1
lx

∞

∑
k=1

lx+k; the expected number of complete years lived after the x-th birthday

(5)

lx = l0s(x)
≡ l0P(X > x) the expected number of survivors to age x from l0 newborns

t px =
lx+t

lx
the probability that (x) survives to age x+ t

tqx =
lx − lx+t

lx
the probability that (x) dies before attaining age x+ t

t|uqx =
lx+t − lx+t+u

lx
the probability that (x) dies aged between x+ t and x+ t +u years

tdx = lx − lx+t the expected number of those who will die aged between x and
x+ t −1 last birthday from l0 newborns

(6)

The expressions relating the functions p, q, or e to lx can be derived by expressing these functions in
terms of the survival function s(x) and using that lx = l0s(x), e.g.

tqx =
s(x)− s(x+ t)

s(x)
=

l0 s(x)− l0 s(x+ t)
l0 s(x)

=
lx − lx+t

lx

or

ex =
∞

∑
k=1

k px =
∞

∑
k=1

sx+k

sx
=

∞

∑
k=1

l0 sx+k

l0 sx
=

∞

∑
k=1

lx+k

lx
.

In this course we will be using two life tables: English Life Table No. 12 – Males and A1967-70.

Life tables are not constructed by observing l0 newborns until the last survivor dies (one would need
to wait too long!). Instead life tables are based on estimates of probabilities of death, given survival
to various ages derived from the experience of the entire population under investigation.
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Thus the English Life Table No. 12 – Males was constructed on the basis of the mortality experienced
by the entire population of England in 1960, 1961 and 1962.

The A1967-70 table is based on the experience, within these years, of lives assured by UK life assur-
ance companies.

Example. Toy example of constructing a life table
Suppose you know qx for all integer x (or, equivalently, px = 1−qx. Then you can construct a life table
using the relations in (5) and lx+1 = pxlx.
For instance, consider an animal population with a lifespan of 5 years (i.e. the animals live at most 5
years) with

p0 = 0.5 = P(T (0) > 1) = P(X > 1)
p1 = 0.4 = P(T (1) > 1) = P(X > 2|X > 1)
p2 = 0.3 = P(T (2) > 1) = P(X > 3|X > 2)
p3 = 0.2 = P(T (3) > 1) = P(X > 4|X > 3)
p4 = 0.1 = P(T (4) > 1) = P(X > 5|X > 4)
p5 = 0 = P(T (5) > 1) = P(X > 6|X > 5)

Set the radix: l0 = 10000, say. Then (as lx+1 = lx × px)

l1 = l0 p0 = 10000×0.5 = 5000, l2 = l1 p1 = 5000×0.4 = 2000, etc.;

d0 = l0 − l1 = 10000−5000 = 5000; d1 = l1 − l2 = 5000−2000 = 3000, etc.;

e0 = l1+l2+l3+l4+l5
l0

= 5000+2000+600+120+12
10000 = 0.7732, hence e

◦
0 � e0 + 1

2 = 1.2732

e1 = l2+l3+l4+l5
l1

= 2000+600+120+12
5000 = 0.5464, hence e

◦
1 � e1 + 1

2 = 1.0464, etc.

x lx dx px qx e
◦

x x

0 10000 5000 0.5 0.5 1.2732 0
1 5000 3000 0.4 0.6 1.0464 1
2 2000 1400 0.3 0.7 0.8660 2
3 600 480 0.2 0.8 0.7200 3
4 120 108 0.1 0.9 0.6000 4
5 12 12 0 1 0.5000 5

SUMMARY:
The relations in (5) and (6).


