Linear interpolation: within each year of age [x, x+1], x = 0, 1, 2, ..., the values of s(y) and l_y , $x \le y \le x+1$, are interpolated from the values of these functions at exact ages x and x+1 as follows:

$$s(x+t) \approx (1-t)s(x) + ts(x+1), \quad (0 \le t \le 1)$$

 $l_{x+t} \approx (1-t)l_x + tl_{x+1}.$

Linear interpolation is consistent with the assumption of a uniform distribution of deaths within each year of age.

Estimating the force of mortality at age *x*:

Force of mortality cannot be directly observed. Its value at exact age x has to be calculated from the values of other life-table functions.

Linear interpolation is not suitable for this purpose as it gives two different values of $\mu(x)$, one when it is used over the interval [x - 1, x] and the other when it is used over [x, x + 1]. Because of this, other approximations are used. Four most common approximations are:

(1) Based on
$$p_x = e^{-\int_0^1 \mu(x+t)dt}$$
.
$$\int_0^1 \mu(x+t)dt = -\ln p_x \qquad \therefore \quad \mu(x+\frac{1}{2}) \approx -\ln p_x$$

(2) Based on $p_{x-1}p_x = {}_2p_{x-1} = e^{-\int_{x-1}^{x+1} \mu(u)du} = e^{-\int_{-1}^{1} \mu(x+t)dt}$.

$$-\ln(p_{x-1}p_x) = \int_{-1}^{1} \mu(x+t)dt \approx 2\mu(x) \qquad \therefore \quad \mu(x) \approx -\frac{1}{2} \Big(\ln p_x + \ln p_{x-1}\Big)$$

(3) Based on the assumption that l_y is a quadratic polynomial in y in the interval [x-1, x+1].

$$\mu(x) \approx \frac{l_{x-1} - l_{x+1}}{l_x}$$

(4) Based on the assumption that l_y is a quartic polynomial in y in the interval [x - 2, x + 2].

$$\mu(x) \approx \frac{8(l_{x-1} - l_{x+1}) - (l_{x-2} - l_{x+2})}{12l_x}.$$

Worked Example: Using approximation (4) and the values of l_x for ages 38,39,40,41,42 from the English Life Table No. 12 – Males, estimate $\mu(40)$

$$\mu(x) \approx \frac{8(l_{x-1} - l_{x+1}) - (l_{x-2} - l_{x+2})}{12l_x}$$

= $\frac{8(93991 - 93570) - (94176 - 93328)}{12 \times 93790} = 0.00224.$

The obtained value coincides with the value of μ_{40} in the table.