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Spectral Determinants
Motivation: - complex eigenvalues
(| det(zI — W)|*)w related to eigv. distr. of 17/ (sometimes explicitly)

o f
Example 1: Gaussian ensembles P (1V v, W};,) ox e~ TWNWy

Mean density p (. 7/) of complex egenvalues z = x + 7y:

pn(z,y) e~ 121" (|det(zIn—1 — WN_1)|2> (complex 1)

WnN_1

pn(z,y) ye_(mQ_yz) erfc(y) (|det(zIn—2 — WN_Q)\2> (real 1V)

WnN—2
but mean density of real eigvs of real matrices is prop. to mean absolute value of spectral

determinant,

pn (@) o e (|det(@In-1 — Wn-1)|)yy_,

Eigenvalue corr. fncs are expressed in terms of higher moments of spectral dets.

[Ginibre ‘64, Lehmann & Sommers '91, Edelman 93, Edelman, Kostlan & Shub '94]
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Spectral Determinants

Example 2: Finite rank deviations from Hermiticity or unitarity. E.g.,

If Wn (v) = RnUn where Uy is CUE and Ry = diag(y/1 — v, 1,...,1) (rank-one

deviations from CUE) then

-\ N—2
pr(@,y)= 2k (1) (| det(2Iv-1 = Wn—1(7))P)uy_.

2
where 7 = 'Z'|j—|’g—1 Note that v = 1 corresponds to subunitary matrices (delete 1st row

& column). In this case v = v = 1.

f Wn(v) = Hny + iI'n, where H v is GUE and 'y = diag(~,0,...,0) (rank-one
deviations from GUE), then

pn(z,y)=rn~(z,y)(|det(zIn 1 — Wn_1(F)|*) ry_,

where v = v — 1.

[Fyodorov & K 99, Zyczkowski K & Sommers *02, Fyodorov & Sommers 03]
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Spectral Determinants

Previous examples are special. In general, one would recover the mean density of

eigenvalues from the mean fractional (absolute) moments of the spectral dets
G(z,y) = (|det(2] — W)[**)w

Because of the singularities, some sort of regularization might be desirable, e.g.,

(| det(zI — W) (2l — W)T + eI|**)w

Unfortunately, we can handle integer moments only, G'(x, /) for integer s.
Note that if the distribution of 11/ is invariant then

(| det (2] — W)|?*)w = <fU(N> [ det (2] — WU)|25dU>

W
In view of this, we consider the class of matrices 11/ — AU where A is fixed and U is

chosen at random from the unitary group U(N). We shall see that the integration over [/
(the ‘angular’ part of 11) reduces non-Hermitian problem (moments of the spectral

determinants) to a Hermitian one.
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Angular integrals

For any two N x /N matrices A and BB

/ det(I — AU)™ det(I — UTB")"dU
U(N)

T T
/ det(I + Q Q@BA)dQ, S
C

The integration on the RHS is over rectangular matrices () of size n. X m.

f ATA < In and B'B < Iy then

/ dU B / dpN,nxm(Q)
det(I — AU)™ det(I — UTBT)™ det(I — QTQ ® BTA)’
U(N) QTQLI

1 <m,n <N,
where de,nxm is the push-forward of the Haar measure under the truncation U +— ()

Note thatif N > n 4+ m then dpn . nxm (Q) o< det(I — QTQ)™N ™ "dQ [Friedman &

Mello ’85; also Neretin '02, Fyodorov & Sommers ‘03, Forrester '06]
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Schur function expansions and CFT

The above integration formulas can be proved by making use of either the Schur function
expansions or Zirnbauer’s Colour-Flavour Transformation (Zirnbauer '96), and in fact these
two approaches are equivalent. The equivalence comes in the form of another pair of integral

identities where s, are Schur functions:

e Fermionic case. For integer N > 0

SA(QTQ) B SA(Im)S)\(In)
‘/(;nXm det( dQ — const.

I+ Qt1Q)N+mtn sx(IN)

e Bosonic case. Forinteger NV > n, m

Sx(Im)sx(In)

/ (@' Qpn (@ = LR g

(UIB) is a corollary of the invariance of dpx ., % m, (UIF) seems to be new.

(UIB) implies the bCFT via Schur functions expansions, and vice versa. We can only show

that (UIF) is equiv. to the fCFT in a particular case (corresponding to (| det (I + AU)|*)v.
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Selberg-type integrals

(UIB) can also be obtained from the Selberg type integral (J>1\/v are Jack polynomials)

/1 1 1
0 0

)TN +p+y(m —1))T'(q+~v(m — 1))
'Ai+p+qg+v2m—-i—-1))

evaluated by Kadell ’88 (for J}\ — S.), Kadell '97 (general), Yan 92, Kaneko ’93.

1
< J,’ > inthe fermionic case yet to be evaluated for arbitrary v which is an interesting

open problem. Known cases v = 1, 2.

~+ = 1: (Schur functions) the integral in both cases, can be evaluated by reducing it to

binomial determinants (Fyodorov & K '06).

~ = 1/2 (zonal polynomials): the integral was evaluated by Constantine '63 in the bosonic

case and his calculation can be extended to the fermionic case.
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Applications: Feinberg-Zee single ring theorem

Consider random matrices W & CV % with inv. matrix distr. ¢~ 7 V" W) 7117 Note

that joint pdf of eigenvalues is only known for the Ginibre ensemble (1 () = ?).

In view of unitary invariance,

et(|z]? T T .
(| det(2I — W)[>™ww oc/ (det(jz/ T+ Q RO W W))w 1

(Cme det(l —|— QTQ)N+2m
Thus, integration over the angular part of 1/ can be traded for an average over m X m
matrices () - Jacobi ensemble. Advantage - now have Hermitian matrices WTW, can apply
orthogonal polynomial technique, etc. Structure - Hankel determinants. Matrix elements are

integrals involving orthogonal polynomials.

Also advantageous for small values of m. E.g., m = 1

I|z]* + tWTW))
(1+¢t)nt2

W dt

+oo (de
<|det(zIW)|2>W(N+1)/O (det
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Applications: Feinberg-Zee single ring theorem

(det(I]z])* +tWTW))..
eigv. distribution o (\) of the Hermitian matrices 11/ 117/, yielding

can be evaluated asymptotically for large /V in terms of the

(| det(=I — W)|2>W = exp|[N®(z,y) + o(N)]

(log | 2|? it |2] >my = [ Ado(N),
®(z,y) = { [, log Addo(N) if1/]z] >m_1= [ o),

X\
LIz|? + [[7 log |Z”\|;T10 do(N\) ifl/m_1 < |z| <ma

do(\) __ 1
A+t T |z|2+t

where ( is the (unique) solution of [~
Strong self-averaging (Berezin '73)

1 ?
lim <N log | det(z] — W)\2>W o ]\;Enoo % log (| det (2] — W)\2>W

N — oo

Yes for GUE (Berezin '73). Yes for Ginibre (by direct computation ®(z, y) = [z|” — 1). Yes
beyond Ginibre as /A ® agrees with mean eigv density of 11/ found by Feinberg & Zee '97.
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Regularised inverse determinants

dU
/U(N) det[(I + AU)(I + AU)* + e2I]m

Non-trivial even for 7 = 1. Direct application of bCFT runs into a problem (diverging

R.(A*A) =

integrals). Schur functions do not help. A deformed version of CFT helps. Expression for

R-(A"A) in the simplest case m = 1:

N_lfl(l—t)N2dt /m o !
2mi J, oo S det[ATA+(52_t)[—i€\/%(S+%)q-

If the eigenvalues a? of AT A are distinct then, in the limit = — 0, this integral can be
evaluated: —cn (2) loge® + dn (2) + O(e),

N
cn (2) = 1)) (1= 121%a)" 72 6(1 — ||
71=1

where 0 is Heaviside’s step fnc. For )xmm(ATA) <
log-singularity (cn (z) # 0).
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Conclusions

moments of spectral determinants is an interesting object, various links to truncations of
random unitary matrices, CFT, Selber-type integrals, Berezin reproducing kernels
(Berezin ’75)

stochastic Horn problem (singular values ~~ eigenvalues) for spectral determinants can

be solved by two equivalent methods: Schur function expansions or CFT.

Feinberg-Zee’s ring density reproduced (but not proved); have conjecture:

% < logdet >= % log < det > (strong non-Hermiticity)

fractional moments or averages of ratios of spectral dets wanted

0 0 <det[521+( J—W)(zl—W)*)]>

igv density. = lim — lim —
mean eigv density. = 2% 9z =t o \ det[e21 + (¢ — W)(CI —W)1)]

other classical groups?
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