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/We are interested fU(n> | det (21 — AU)|*"dug (U). \

Motivation - complex eigenvalues.

(| det(zI — W)|*)w related to eigv. distr. of W (sometimes explicitly). E.g. Ginibre
ensembles, finite rank deviations from Hermiticity or unitarity, in particular truncations of

random unitary matrices.

The first moment, {| det(zI — AU)|?)v can be handled with bare hands. Can work with

diagonal A.
Write | det(z] — AU)|* = det(zI — AU)det(zI — AU)* and expand each det in
powers of z.
det(zI — AU) = Z(—l)rzn_rer(AU)
r=0
— Z(_l)rzn—r Z Qiq °'°a¢rU(i1,...iT),
r=0 1<i1<... <1<
Here the e,-(AU) are elementary symmetric fncs of eigvs of AU and U (i1, . . . i, ) are the

Qrincipal minors of U. /
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ﬁythe invariance of the Haar meas, the cross product terms vanish and

< det(zI — AU)det(zI — AU)" >y=

Again, by the invariance, (

the generating function

(U,...,m)*)v = 1/C}. Thus finally

= (n+1)

where we have used

Z?:o |Z|2(n_r) Zl§i1<...<ir§n azzl T

(i1, .. -ir)|*)o = (JU(1,

(det(2] = U)(2I = U)")v = 327, [P (U (1,

L))o

<det|(zI — AU)|> >y = Z| 2(n— rer(AA") AA)

/ det([\z|2 +tAA")
0

t"dt

g =00 [

N

1+ ¢t)nt2

(1+t)nt2

ai < |U(iz,...i)|° >v

The evaluation of the left-hand side is a standard random matrix computation which yields

dt,

~

.,7)|?)r, hence make use of
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/For higher moments of | det(z — AU)|?

e the elementary symmetric functions are replaced by Schur functions

(polynomials), and

of my knowledge).

~

e the integral representation for 1 / C! by a Selberg-type integral, (new to the best
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@:hur functions \

homogeneous symmetric polynomials indexed by partitions A = ()\1, - )\n)

Sx(T1,...,@n) = det(a:nH\j _j)/ det (2 ~7)

7

By convention, sx () = 0 if the number of parts of \ is greater than the number of ;. Also
reduction property, Sx(x1,...,2Tr) = sx(x1,..., Tk, 0) if the number of parts < k.
Two examples:
o If A\ = (r) then sy = h,., the complete symmetric function of degree 7,
o If A= (1,...,1)then s = e,, the elementary symmetric function of degree 7.
Have Jacobi-Trudi identities
sx = det(hy;—j+x) = det(ex, ;i)

where \ is the partition conjugate to A (reflection in the diagonal of the Young diagram).

N /

Slide 5




Random matrices: probabilistic aspects and applications, 15 January 2008, HIM, Bonn

me usefulness of orthogonality \

By convention, if M is a matrix with eigvs x; then sx (M) = sx(x1,...,Zn).

Group theoretic fact: s are irreducible characters of the unitary group, hence orthogonal

/U O () = 6,

If f(z1,...,2n) =D, cxsa(z1,...,Tn) then

cx = U()f() A(U)dpw(U)

x / F(e, . .. e ) det(e "0 (mTATR)Y deg (9 (MR g
[0,27]

For multiplicative functions f = [ [, g(«) the above integral can be easily evaluated by the
Gram identity

N

1 27T

cy = det(ar, —k+j), ar= — g(e®)e " dp
2™ Jo

/
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G(amples \

1.

Take [ [, (1 — tex,) =11, 9(z;), where g(z) =], (1 — tex) " = hex”.
Then cx = det(hx, —k+;). Now, by Jacobi-Trudi, det(hx, —x+j) = s, so that

H (1 —trz;) " = Z sa(t)sa(x)  Cauchy identity.
7k A
Take [ [, (1 +tez;) =11, g(x;), where g(z) =[], (1 + tkx)=)_ e x". Then
cx = det(ex, —k+;). Now, by Jacobi-Trudi, det(ex, —k+;) = S/, so that

H(l + tpxj) = Z sa'(t)sx(x)  Dual Cauchy identity.

7k A

Take exp(z1 + ... + xn) = ||, g(z;), where g(z) = expx = > " /rl. Then
cx = det(1/(Ax — k + 7)!), so that (e.g. Balantekin, Orlov)

noop - (n—])'
e—i=1"7 = E casa(x), cex=sa(ln) || — .
A - (n+ A —g)!

Q.
I

\Other examples include expansions of | [ (1 + ;)T a > 0, (Hua identity and its dual)./
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G(amples \

Fact: s are also irreducible characters of the general linear group, leading to

[ (AU BTy (1) = 61, 22D )
U(n) 8)\(]71)
/ sx(AUBU ) dpn (U) = 24 B) @)
U(n) sx(In)

4. (due to Balantekin) Expanding exp(tr AU BU™) in Schur fncs and then using (2),

det (e %)
A(a)A(d)

/ exp(tr AUBU")dun (U) = Const. ltzykson-Zuber
U(n)

5. (due to Schlittgen & Wettig) Expanding exponentials and then using (1)

det(zf_llk_l(zj))
A(z?)

/ exp(tr(AU + B*U")duu (U) = Const.
U(n)

2 2

\ where 27, ..., z: are (distinct) eigenvalues of AB™. /
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ﬁuncations of unitary matrices and Selberg-type integrals \
Setting A = diag(1x,0,—%) and B = diag(1,,, 0n—m ), k < m, in (2), one cuts the
left-top k& X m corner () of U arriving at [dp is the Haar induced measure]

SA(lk)S)\(lm)
sa(1n)

/ 52(QQ")dpn ixm(Q) = )
QA*<Ig

It k +m < nthen dpp kxm ox det(l — QQ*)”_’“_mdQ (Friedman & Mello ’85, and,

recently, Neretin, Fyodorov & Sommers, Forrester). Changing vars of integration in (3) yields

k
1 n k—m SA(lk)S)\(lm)
"(1 — - = :
Zn /[0 1]k ];[ CJj H QJ SA(ln)

1<

LHS is a particular case of a Selberg-type integral (general (3, Jack p’mials). Conjectured by
Macdonald, evaluated by Yan '92, Kaneko '93, Kadell '97.

If kK + m > n then dp is supported on the boundary of QQ* < I. The joint p.d.f. of

non-trivial eigenvalues of Q)™ is Jacobi-type. Integration formulas available.

N /
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Gal Selberg-type integral \

Recall the Beta-integral

1 ) ) o0 tp—l
P=2 (1 — ) = dt = B :
[era-nTas | =B

Correspondingly, the Yan-Kaneko-Kadell generalization of the Selberg integral

* x\n—k—m - S>\<17€)S>\(1m)
Const. /QQ*SIk sx(QQ7) det(I — QQ™) dQ = L) (4)
has its dual
) dQ _sa(lk)sa(lm)
Const. LQ*ZO SA(QQ )det(I+QQ*)”+k+m - 8)\/(1”) (5)

(here Q is k x m). Note the emergence of \" and no constraints on Q.

The original Selberg integral can be transformed into an integral over [0, oo)” However, the
integral in (5) requires a separate evaluation (Schur fncs are not preserved by the
transformation). The 5 = 1 integral (involving zonal p’mials) can also be handled. However,

\ﬁ;é 1, 2 (Jack p’mials) — still to be evaluated. /
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G\gular integrals \

n, k, m are positive integers (Think of n > k, m)

Matrices A, B, U are n X n. Matrices (Q are k X m.
By Cauchy identities,

e Selberg-type integral (4) is equivalent to

[ dun (U) -/ Ao (@)
det(I — AU)* det(I — U*B*)™ 00*<I det(I — QQ* ® B*A)’

U(n) min(k,m)

The above identity holds for 1 < k, m < n. Higher moments?

e Dual Selberg-type integral (5) is equivalent to
/ det(I + AU)* det(I + U*B*)"dpp (U) =
U(n)

/ det(I +QQ" ® B*4)
Ckxm det(I+QQ*)n+k+m .

N /
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ﬁpplication to spectral determinants of matrices with complex eigenvalues \

Random matrices W € C"*", with invariant ensemble distribution (e.g.

e=nTr VIV W) qpp7).

Note that joint pdf of eigenvalues is rarely known for such matrices.

In view of unitary invariance,

(| det(I 4 zW)]?™) o

/ (det(I + |2[2Q*Q & W*W))hw det(I,, + Q*Q)~"~2"dQ)
C

mXm

Thus, integration over angular part of W can be traded for Jacobi average over
m X m matrices (). Advantage - now have Hermitian matrices W * IV, can apply
orthogonal polynomial technique, etc.

Structure - Hankel determinants. Matrix elements are integrals involving orthogonal

@Iynomials. /
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G)Iour-flavour transformations (Zirnbauer ’96) \

e Bosonic version. {Z; } ;21 and {/; } /=1 are two sets of vectors in C". If 2m < n then

/ o2 i (T UT+E5 U™ F5) dpr (U) «
U(n)

/ e Thmr QT H@ LTI det(] — QQ) 2" dQ
QQ*<Im

e Fermionic version. Now x;, 15, )Zj and w;‘ are [N -component vectors with

anti-commuting components. For any m have

/ =i (GUS U gy (U) =
U(n)

/ ezg'?k:l(ijYZ%j—(Q*)ijZ%Ej) d@)
cmxm det(I + QQ*)nt2m

Zirnbauer: algebraic/geometric approach, other classical groups, SUSY variant. In the RMT

/
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G:FT and truncations of CUE \

X and Y are n X m with columns &; and 4/;. XY™ has rank m (generically). Hence link

to truncations of CUE.

By Schur fnc expansion and Selberg-type integral (4), have
[ @y = [T g 0(Q)
U(n) QR*<Im

This is another form of bCFT, but now in the extended range m < n.
If 2m < n then dpp, mxm x det(l — QQ*)n_deQ and we are back to Zirnbauer.
CFTs and Selberg type integrals (linked via Schur function expansions):

e bCFT implies (4) and vice versa

e fCFT implies (5). Is the converse true?

N /
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ﬁegularised inverse determinants \

L dpw (U)
Reld'4) = /U<n> det[(I + AU)(I + AU)" +e2I]"

Non-trivial even for . = 1. Direct application of bCFT runs into a problem (diverging

integrals). Schur functions do not help.

A deformed version of CFT: integration over Q@ < I,,, can be replaced by integration over
a pair of Hermitian matrices Q1 = TPT*, Q2 = (T*) " 'PT~ ', where T € G L,,(C)
and P = diag(p1,.-.,Pm)
2 22
(dQ1dQ2) = dpu(T) | [ (0] —pi)* | [ pidps
J

j<k

p;| < 1. ”Volume element”

Expression for R. (A" A) in simplest case m = 1:

B 1 +00
n-l / (1—6)" %dt / A o N
omi —oo % det [AA* + (2 —t) ] —ievi(z + 1) I]

N /
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