
3. Hausdorff Spaces and Compact Spaces

3.1 Hausdorff Spaces

Definition A topological space X is Hausdorff if for any x, y ∈ X with x 6= y there

exist open sets U containing x and V containing y such that U
⋂
V = ∅.

(3.1a) Proposition Every metric space is Hausdorff, in particular R n is Hausdorff (for

n ≥ 1).

Proof Let (X, d) be a metric space and let x, y ∈ X with x 6= y. Let r = d(x, y). Let

U = B(x; r/2) and V = B(y; r/2). Then x ∈ U , y ∈ V . We claim U
⋂
V = ∅. If not there

exists z ∈ U
⋂
V . But then d(x, z) < r/2 and d(z, y) < r/2 so we get

r = d(x, y) ≤ d(x, z) + d(z, y) < r/2 + r/2

i.e. r < r, a contradiction. Hence U
⋂
V = ∅ and X is Hausdorff.

Reamrk In a Hausdorff space X the subset {x} is closed, for every x ∈ X. To see this

let W = CX({x}). For y ∈ W there exist open set Uy, Vy such that x ∈ Uy, y ∈ Vy and

Uy
⋂
Vy = ∅. Thus Vy ⊂W and W =

⋃
y∈W Vy is open. So CX(W ) = {x} is closed.

Exercise 1 Suppose (X,T ) is Hausdorff and X is finite. Then T is the discrete topology.

Proof Let x ∈ X . Then {x} is closed. If Z = {x1, x2, . . . , xm} is any subset of X then

Z = {x1}
⋃
{x2}

⋃
{xn} is closed. So all subsets are closed and hence all subsets are open

and X has the discrete topology.
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Exercise 2 Let X be an infinite set and let T be the cofinite topology on X . Then

(X, T ) is not Hausdorff.

Lets suppose it is and derive a contradiction. Pick x, y ∈ X with x 6= y. Then there

exists open sets U, V such that x ∈ U, y ∈ V and U
⋂
V = ∅. Since X has the cofinite

topology and U, V are nonempty, CX(U) and CX(V ) are finite. But then X = CX (∅) =

CX (U
⋂
V ) = CX(U)

⋃
CX (V ) is finite - contradiction.

(3.1b) Let X be a Hausdorff space and let Z ⊂ X. Then Z (regarded as a topological

space via the subspace topology) is Hausdorff.

Proof Let x, y ∈ Z. Since X is Hausdorff there exist open sets U, V in X such that

x ∈ U , y ∈ V and U
⋂
V = ∅. But then U∗ = U

⋂
Z and V ∗ = V

⋂
Z are open in (the

subspace topology on) Z, moreover x ∈ U∗, y ∈ V ∗ also

U∗
⋂

V ∗ = U
⋂

Z
⋂

V
⋂

Z = (U
⋂

V )
⋂

Z = ∅.

Hence Z is Hausdorff.

(3.1c) Proposition Suppose that X,Y are topological spaces that X is homeomorphic

to Y and Y is Hausdorff. Then X is Hausdorff.

Proof Let f : X → Y be a homeomorphism. Let x1, x2 ∈ X with x1 6= x2. Then

f (x1), f(x2) ∈ Y and f (x1) 6= f (x2) (as f is a homeomorphism, in particular it is a 1− 1-

map). By the Hausdorff condition there exist open sets V1, V2 of Y such that f (x1) ∈ V1,

f (x2) ∈ V2 and V1

⋂
V2 = ∅. But now x1 ∈ f−1V1, x2 ∈ f−1V2 and f−1V1

⋂
f−1V2 =

f−1(V1

⋂
V2) = f−1(∅) = ∅. Hence X is Hausdorff.

Definition Suppose P is a property which a topological space may or may not have

(e.g. the property of being Hausdorff). We say that P is a topological property if whenever

X,Y are homeomorphic topological spaces and Y has the property P then X also has the

property P.

So we may re-cast (3.1c) as:

(3.1c)’ Hausdorffness is a topological property.
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3.2 Compact Spaces

How can we tell whether [0, 1] is homeomorphic to R ? Find a topological property which

[0, 1] has but R does not have.

Definition Let X be a topological space. An open cover of X is a collection of open

sets {Ui | i ∈ I} such that X =
⋃
i∈I Ui.

A subcover of an open cover {Ui | i ∈ I} is an open cover of the form {Uj | j ∈ J}, where

J is a subset of I .

Examples 1. Let X = R and let Un = (−n,+n), for n = 1, 2, . . .. Then {Un |n ∈ N }
is an open cover of R , i.e. R =

⋃∞
n=1 Un. This is so because, for r ∈ R we can choose a

positive integer m greater than |r| and then r ∈ (−m,+m) = Um, so r ∈ Um ⊂
⋃∞
n=1 Un.

Hence
⋃∞
n=1Un contains every real number, i.e.

⋃∞
n=1 Un = R .

A subcover of this open cover is {Un |n ∈ J} where J is the set of even positive integers.

Example 2 Let X = R . Let U1 = (−∞, 0), U2 = (0,∞), U3 = (−1, 1), U4 = (−4, 4),

U5 = (−5, 5) and Un = (−n, n), for n ≥ 4. Then {Un | n ∈ N } is an open cover of R and

{U1, U2, U3} is a subcover.

Notice that in both Examples above X is given an open cover consisting of infinitely

many sets. In Example 2 there is a finite subcover (a subcover consisting of finitely many

sets) and in Example 1 there is not.

Example 3 Let X = [0, 1] (with the subspace topology induced from R ). Let U1 =

[0, 1/4) and Un = (1/n, 1], for n = 2, 3, 4, . . .. Then U1 = [0, 1]
⋂

(−1/4, 1/4) is open in the

subspace topology and so is Un = [0, 1]
⋂

(1/n, 2), for n ≥ 2. Note that {Un |n = 1, 2, . . .}
is an open cover and {U1, U5} is a subcover.

Definition A topological space X is compact if every open cover of X has a finite

subcover, i.e. if whenever X =
⋃
i∈I Ui, for a collection of open sets {Ui | i ∈ I} then we

also have X =
⋃
i∈F Ui, for some finite subset F of I.

(3.2a) Proposition Let X be a finite topological space. Then X is compact.
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Proof Let X = {x1, x2, . . . , xn}. Let {Ui | i ∈ I} be an open cover of X. Then x1 ∈
X =

⋃
i∈I Ui so that x1 ∈ Ui1 for some i1 ∈ I . Similarly, x2 ∈ Ui2 for some i2 ∈ I , . . .,

xn ∈ Uin , for some in ∈ I .

Let F = {i1, i2, . . . , in}. Then xr ∈ Uir ⊂
⋃
i∈F Ui, for each r. Hence every x in X

belongs to
⋃
i∈I Ui and so X =

⋃
i∈F Ui, i.e. {Ui | i ∈ F } is a finite subcover of {Ui | i ∈ I}.

When is a subspace of a topological space compact?

(3.2b) Lemma Let X be a topological space and let Z be a subspace. Then Z is compact

if and only if for every collection {Ui | i ∈ I} of open sets of X such that Z ⊂
⋃
i∈I Ui there

is a finite subset F of I such that Z ⊂
⋃
i∈F Ui.

Proof (⇒) Suppose Z is compact (regarding Z as a topological space with the subspace

topology). Let {Ui | i ∈ I} be a collection of open sets of X with Z ⊂
⋃
i∈I Ui. Then we

have

Z = Z
⋂

Z ⊂ Z
⋂

(
⋃

i∈U
Ui) =

⋃

i∈I
Z

⋂
Ui.

On the other hand
⋃
i∈I Z

⋂
Ui ⊂ Z so we have Z =

⋃
i∈I Z

⋂
Ui. Writing Vi = Z

⋂
Ui

we thus have that all Vi are open in Z (in the subspace topology) and Z =
⋃
i∈I Vi. By

compactness we therefore have Z =
⋃
i∈F Vi for some finite subset F of I . Now Vi ⊂ Ui so

we get

Z =
⋃

i∈F
Vi ⊂

⋃

i∈I
Ui

and Z ⊂
⋃
i∈F Ui, as required.

(⇐) Now suppose that Z has the property that whenever Z ⊂
⋃
i∈I Ui, for open sets Ui

in X , there exists a finite subset F of I such that Z ⊂
⋃
i∈F Ui. We will show that Z is

compact. Let {Vi | i ∈ I} be an open cover of Z. Thus each Vi is open in the subspace

topology, so have the form Vi = Z
⋂
Ui for some open set Ui in X. Now we have Z =

⋃
i∈I Vi ⊂

⋃
i∈I Ui. By the assumed property we therefore have Z ⊂

⋃
i∈F Ui for some finite

subset F of I . Hence we have Z = Z
⋂

(
⋃
i∈F Ui) =

⋃
i∈F Ui) =

⋃
i∈F Z

⋂
Ui =

⋃
i∈F Vi.

Thus {Vi | i ∈ F} is a finite subcover of {Ui | i ∈ I} and we have shown that every open

cover of Z has a finite subcover. Hence Z is compact.

Is a subspace of a compact space compact ? The answer is generally no! We shall see

that [0, 1] is compact, but on the other hand (0, 1) is not compact (e.g. (0, 1) =
⋃∞
n=2Un

where Un = (1/n, 1) but {Un |n = 2, 3, . . .} has no finite subcover).
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However:

(3.2c) Let X be a compact topological space and let Z be a closed subset. Then Z is a

compact topological space.

Proof We will use (3.2b) Lemma. So let {Ui | i ∈ I} be a collection of open sets in X

such that Z ⊂
⋃
i∈I Ui. Let I∗ = I

⋃
{α}, where α is not in I and set Uα = CX(Z). Then

we claim that {Ui | i ∈ I∗} is an open cover of X. Well

X = Z
⋃

CX(Z) ⊂
⋃

i∈I
Ui

⋃
Uα =

⋃

i∈I∗
Ui

and certainly
⋃
i∈I∗ Ui ⊂ X so that X =

⋃
i∈I∗ Ui. But X is compact so that X =

⋃
i∈F ∗ Ui, for some finite subset F ∗ of I∗.

Now I∗ = I
⋃
{α} so that

F ∗ = F ∗
⋂

I∗ = (F ∗
⋂

I)
⋃

(F ∗
⋂
{α}).

We set F = F ∗
⋂
I so that F ∗ = F or F ∗ = F

⋃
{α}. Thus

X =
⋃

i∈F∗
= (

⋃

i∈F
Ui)

⋃
Uα = (

⋃

i∈F
Ui)

⋃
CX(Z).

Hence
Z =Z

⋂
X = (

⋃

i∈F
Z

⋂
Ui)

⋃
(Z

⋂
CX(Z))

=
⋃

i∈F
Z

⋂
Ui

(as Z
⋂
CX (Z) = ∅). So we have Z ⊂ ⋃

i∈F Ui, for a finite subset F of I . Hence Z is

compact, by (3.2b).

What about the converse? If X is a topological space and Z ⊂ X is such that Z is

compact (with respect to the subspace topology) then is Z closed? No! For example take

X to be a set with two elements α and β, so X = {α, β}. Regard X as a topological space

with the indiscrete topology. Then Z = {α} is compact (by (3.2a)) but it is not closed.

However:

(3.2d) Suppose X is a Hausdorff topological space and that Z ⊂ X is a compact sub-

space. Then Z is closed.
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Proof We will show that CX(Z) is open. By (2.2e) it is enough to prove that for each

y ∈ CX(Z) there exists an open set Wy containing y with Wy ⊂ CX(Z).

For each x ∈ X there are open sets Ux, Vx in X such that x ∈ Ux, y ∈ Vx and

Ux
⋂
Vx = ∅.

Since x ∈ Ux for each x ∈ Z we have

Z ⊂
⋃

x∈Z
Ux.

By the compactness of Z and (3.2a) Lemma we have Z ⊂ (Ux1

⋃
Ux2

⋃
· · ·

⋃
Uxn) for a

finitely many x1, x2, . . . , xn ∈ Z. Let Wy = Vx1

⋂
Vx2

⋂
· · ·

⋂
Vxn . Then Wy is an open set

(since it is the intersection of finitely many open sets) containing y (since each Vx contains

y). Suppose z ∈ Z
⋂
Wy. Then z ∈ Z ⊂ Ux1

⋃
Ux2

⋃
Uxn so that z ∈ Uxi for some i. Also

z ∈ Wy ⊂ Vxi so that z ∈ Uxi
⋂
Vxi = ∅, a contradiction. Hence there are no elements in

Wy

⋂
Z, i.e. Wy

⋂
Z = ∅ and so Wy ⊂ CX(Z).

To summarize : for each y ∈ CX(Z) we have produced an open set Wy such that

y ∈ Wy ⊂ CX(Z). By (2.2f) Lemma, CX(Z) is open, i.e. Z is closed.

We now start looking in earnest for compact subsets of R n. The previous result tells

us that any compact Z ⊂ R n must be closed. The next result says that Z cannot be too

big.

Definition Let Z be a subset of a metric space X, with metric d. We say that Z is

bounded if there exists a positive real number N such that d(z, z′) < N for all z, z′ ∈ Z .

e.g. in R the subset {0,±1,±2, . . .} is not bounded, but [0, 1] is.

(3.2e) Proposition Let Z be a subset of a metric space X. If Z is compact (in the

subspace topology) then Z is bounded.

Proof Let z0 ∈ Z. We claim that

X =

∞⋃

n=1

B(z0;n).

By definition each B(z0;n) ⊂ X so that RHS ⊂ LHS. Now let x ∈ X. Then d(x, z0) = k,

say, where k ≥ 0. Pick a positive integer n > k. Then we have x ∈ B(z0; n) and hence

x ∈ LHS. Hence RHS ⊂ LHS and so LHS = RHS, i.e. the claim is true.
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Now suppose Z is compact. Then Z ⊂
⋃∞
n=1B(z0; n) and so, by (3.2b) Lemma, we

have Z
⋃
B(z0;n1)

⋃
B(z0;n2)

⋃
· · ·

⋃
B(z0;nr), for finitely many open balls

B(z0;n1), B(z0;n2), . . . , B(z0; nr). Let m = max{n1, n2, . . . , nr}. Then we have Z ⊂
B(z0;m). Now for z1, z2 ∈ Z we have

d(z1, z2) ≤ d(z1, z0) + d(z0, z2) ≤ m +m = 2m.

Hence Z is bounded.

(3.2f) Corollary Suppose that Z is a compact subset of R n. Then there exists some

K > 0 such that for all t = (t1, t2, . . . , tn) ∈ Z we have |ti| ≤ K, for 1 ≤ i ≤ n.

Proof Regard R n as a metric space with the metric

d(x, y) = max{|xi − yi| : i = 1, 2, . . . , n}

for x = (x1, . . . , xn), y = (y1, . . . , yn) (see Example 3 of Section 2.1). By the above

Proposition there exists an N such that d(x, y) < N for all x, y ∈ Z. Fix s ∈ Z. Then

form each t ∈ Z we have

d(0, t) ≤ d(0, s) + d(s, t) ≤ d(0, s) +N.

Thus we have d(0, t) ≤ K, where K = d(0, s) + N . For t = (t1, . . . , tn) ∈ Z we have

d(0, t) = max{|t1|, |t2|, . . . , |tn|} so that |ti| ≤ K for all i and the proof is complete.

(3.2g) [0, 1] is compact.

Proof We must show that whenever [0, 1] ⊂
⋃
i∈I Ui, for a collection of open set {Ui | i ∈

I} of R then there is a finite subset F of I such that [0, 1] ⊂
⋃
i∈F Ui (see (3.2b)). We do

this by “creeping along” from the left. We let S be the set of all x ∈ (0, 1] such that there

exists some finite subset Fx, say, of I such that [0, x] ⊂
⋃
i∈Fx Ui. Thus S is the set of x

such that [0, x] can be covered by finitely many of the sets Ui.

Step 1 S is not empty.

Proof Since 0 ∈ [0, 1] we have 0 ∈ Uj for some j ∈ I and so (−r, r) ⊂ Uj for some r > 0.

Let s = min{r, 1}. Then 0 < s/2 < 1 and [0, s/2] ⊂ (−r, r) ⊂ Uj . Hence [0, s/2] is covered

by finitely many Ui’s (one in fact) and so s/2 ∈ S.
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Let α be the least upper bound of the set S.

Step 2 α ∈ S.

Proof Note α ≤ 1. Assume for a contradiction that α 6∈ S. Thus every element of

S is less than α. Now α ∈ Uj for some j so that (α − r, α + r) ⊂ Uj for some r > 0.

Since α − r is not an upper bound for S so we have α − r < β < α for some β ∈ S.

There exists a finite subset F , say, of I such that [0, β] ⊂ ⋃
i∈F Ui and moreover we have

[β, α] ⊂ (α− r, α + r) ⊂ Uj . Thus we have

[0, α] = [0, β]
⋃

[β, α] ⊂
⋃

i∈F∗
Ui

where F ∗ = F
⋃
{j}. But this shows that β ∈ S, a contradiction.

Step 3 Conclusion α = 1.

Proof Suppose not, so that α < 1. Now α ∈ Uj for some j ∈ I and so (α−r, α+r) ⊂ Uj

for some r > 0. Put s = min{r, 1 − α}. Then [α,α + s/2] ⊂ Uj so that [0, α + s/2] ⊂
Uj

⋃ ⋃
i∈F Ui which implies that α + s/2 ∈ S, contradiction the fact that α is the least

upper bound.

Thus α = 1 and [0, 1] can be covered by finitely many of the sets Ui. Hence [0, 1] is

compact.

(3.2h) Let X,Y be topological spaces with X compact and let f : X → Y a continuous

map. Then f(X) = Im(f ) is compact.

Proof Let Z = Im(f ). Let {Vi | i ∈ I} be a collection of open sets in Y such that

Z ⊂
⋃
i∈I Vi. Then X =

⋃
i∈I Ui, where Ui = f−1Vi, for i ∈ I . Now X is compact so there

is a finite subset F of I such that X =
⋃
i∈F Ui. We claim that we have have

f(X) ⊂
⋃

i∈F
Vi.

Let y ∈ f (X) then we can write y = f(x) for some x ∈ X . Since X =
⋃
i∈F Ui we have

x ∈ Ui = f−1Vi for some i ∈ F and hence y = f(x) ∈ Vi. Thus every y ∈ f (X) belongs to
⋃
i∈F Vi, i.e. f (X) ⊂

⋃
i∈I Vi. Thus, by (3.2b), f(X) is compact.

(3.2i) Corollary Compactness is a topological property.

(3.2j) Proposition For a < b, the closed interval [a, b] is compact.
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Proof Define f : [0, 1] → [a, b] by f(x) = a + x(b − a). Then f is a homeomorphism

(with inverse g : [a, b] → [0, 1] given by g(x) = (x− a)/(b− a)).

(3.2k) R is not homeomorphic to [0, 1].

Proof [0, 1] is compact but R is not (e.g. the open cover {Un |n ∈ N }, with Un = (−n, n),

has no finite subcover).

Remark (3.2l) If S is a subset of R which is bounded above then the least upper

bound of S belongs to the closure S. Similarly, if S is bounded below then the greatest

lower bound belongs to S.

We see this as follows. Let α be the least upper bound. If α ∈ S then certainly α ∈ S.

So assume α 6∈ S. For a positive integer n, the number α − 1/n is not an upper bound so

there exists xn ∈ S with α − 1/n < xn ≤ α. Then α = limxn and so lies is S, by (2.3d),

and (2.3b).

Similar remarks apply to the greatest lower bound.

(3.2m) Proposition Let f : [a, b] → R be a continuous function (where a < b). Then f

is bounded and attains its bounds, i.e. there exists x0, x1 ∈ [a, b] such that f(x0) ≤ f(x)

and f (x) ≤ f(x1) for all x ∈ [a, b].

Proof Put Z = Im(f ). Then Z is compact, by (3.2h). Hence Z is closed and bounded

by (3.2d) and (3.2f). Let β be the least upper bound of Z. Then β ∈ Z by (3.2l) and

Z = Z so that β ∈ Z. Hence there exists x1 ∈ [a, b] such that f(x1) = β. So we have

y ≤ f(x1) for all y ∈ Im(f ), i.e. f (x) ≤ f(x1) for all x ∈ [a, b].

Similarly there exists x0 ∈ [a, b] such that f(x0) ≤ f (x) for all x ∈ [a, b].

3.3 Product Spaces

Suppose X and Y are topological spaces. We consider the set of points X × Y =

{(x, y) |x ∈ X, y ∈ Y }. We would like to regard X × Y as a topological space. But what

should be its open sets? The obvious “try” is to say that a subset of X×Y is open if (and

only if) it has the form U × V , where U is open in X and V is open in Y . Unfortunately

this doesn’t quite work. The problem is that a union of sets of this form is not generally a
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set of this form. For example take X = Y = R . Then (0, 1) × (0, 5)
⋃

(0, 5)× (4, 5) is not

a set of the form U × V .

But the remedy is quite straight forward. For topological space X, Y we shall take for the

topology all possible unions of sets of the form U ×V , with U open in X and V open in Y .

There is some checking to be to see that this really works, which we do in (3.3a), (3.3b)

below.

Definition Let (X, S) and (Y,T ) be topological spaces. Define V to be the set of

subsets of the form
⋃
i∈I Ui × Vi, where I is a set and for each i ∈ I , Ui is an open set in

X and Vi is an open set in Y .

(3.3a) A subset W belongs to V if and only if for each w ∈ W there exist open sets

U ⊂ X and V ⊂ Y with w ∈ U × V ⊂W .

Proof Suppose that W has the stated property. For each w ∈ W let Uw be open in

X and Vw be open in Y such that w ∈ Uw × Vw ⊂ W . Then
⋃
w∈W Uw × Vw ⊂ W and

⋃
w∈W Uw × Vw contains w for each w ∈W . Hence W =

⋃
w∈W Uw × Vw. Putting I = W

we have W =
⋃
i∈I Ui × Vi so that W ∈ V.

Conversely suppose W =
⋃
i∈I Ui × Vi. If w ∈ W then w ∈ Ui × Vi for some i so we

have w ∈ U × V ⊂ W , where U = Ui, V = Vi.

Remark If X, Y are sets U1, U2 ⊂ X and V1, V2 ⊂ Y then (U1 × V1)
⋂

(U2 × V2) =

(U1

⋂
U2)× (V1

⋂
V2).

Proof Exercise.

(3.3b) (X × Y,V) is a topological space.
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Proof (i) By (3.3a) we have ∅ ∈ V (there is nothing to check). Also for W = X×Y and

any w ∈W taking U = X,V = Y we get w ∈ U × V ⊂W so that W = X × Y is in V.

(ii) Suppose that W1,W2 ∈ V. We claim W1

⋂
W2 ∈ V. Put W = W1

⋂
W2. Let w ∈ W .

Then by (3.3a) there exist open sets U1 in X , V1 in Y such that w ∈ U1 × V1 ⊂ W1, and

(also by (3.3a)) there exist open sets U2 in X, V2 in Y such that w ∈ U2 × V2 ⊂ W2.

Hence w ∈ (U1×V1)
⋂

(U2×V2) ⊂W1

⋂
W2, i.e. w ∈ (U1

⋂
U2)× (V1

⋂
V2) ⊂W . Putting

U = U1

⋂
U2 and V = V1

⋂
V2 we have w ∈ U × V ⊂W . Hence W = W1

⋂
W2 is in V .

(iii) Now suppose that {Wi | i ∈ I} is a collection of sets in V. We claim that W =
⋃
i∈I Wi

is in V. Let w ∈ W . Then w ∈ Wj for some j ∈ I . By (3.3a) there are open sets U in

X and V in Y such that w ∈ U × V ⊂ Wj . Thus w ∈ U × V ⊂ W (as Wj ⊂ W ) so W

belongs to V, by (3.3a).

We have now verified the three conditions for V to be a topology.

Definition We call V the product topology on X × Y and, as usual, call an element of

the topology V an open set.

Example If X and Y are discrete then X × Y is discrete.

Example If X and Y are indiscrete then X × Y is indiscrete.

Example We can now give R 2 = R ×R the product topology. Is this different from the

natural topology defined by the metric d(p, q) =
√

(x1 − x2)2 + (y1 − y2)2, for p = (x1, y1),

q = (x2, y2) ?

Suppose W is open in the product topology and let w = (x0, y0) ∈ W . Then we

have (x0, y0) ∈ U × V , for some U, V open. Since U is open and x0 ∈ U there exists

some ε1 > 0 such that x ∈ U whenever |x − x0| < ε1, and, since V is open, there exists

some ε2 > 0 such that y ∈ V whenever |y − y0| < ε2. Putting ε = min{ε1, ε2}, we

get x ∈ U , y ∈ V whenever |x − x0| < ε, |y − y0| < ε. Now if z = (x, y) ∈ Bd(w; ε) then
√

(x− x0)2 + (y − y0)2 < ε which implies |x−x0| < ε and |y−y0| < ε and so x ∈ U, y ∈ V .

Hence we get Bd(w; ε) ⊂ U × V ⊂ W . Thus for any w ∈ W there exists ε > 0 such that

Bd(w; ε) ⊂ W . Hence W open in the product topology implies W open in the natural

topology on R 2.
Now suppose W is open in the natural topology and let w = (x0, y0) ∈ W . Then

there exists ε > 0 such that Bd(w; ε) ⊂ W . Let U = {x ∈ R : |x − x0| < ε/2} and
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V = {y ∈ R : |y − y0| < ε/2}. If w′ = (x′, y′) ∈ U × V then

d(w, w′) =
√

(x− x0)2 + (y − y0)2 <
√
ε2/4 + ε2/4 =

ε√
2
< ε.

Hence w′ ∈ Bd(w; ε). Hence w′ ∈ U × V ⊂ Bd(w; ε) ⊂ W . We have shown that for each

w ∈ W there exist open sets U, V in R such that w′ ∈ U × V ⊂ W . Hence W is open in

the product topology.

We have shown that a subset W of R 2 is open in the product topology if and only it

is open in the natural topology on R 2. Hence these topologies coincide.

Example More generally, suppose that (X1, d1), (X2, d2) are metric spaces. The X1

and X2 have natural topological space structures given by the metrics d1 and d2.

Let X = X1 × X2. Then we can define the “product metric” d on X by d(z, t) =

max d1(x1, y1), d2(x2, y2), for z = (x1, x2), t = (y1, y2) in X = X1×X2. We claim that the

topology given on X by the metric d is actually the product topology.

Let W be open in the product topology and let w = (x1, x2) ∈ X. Then we have

w ∈ U ×V ⊂W for some open sets U and V of X1 and X2. Thus we have Bd1(x1; r1) ⊂ U

and Bd2(x2; r2) ⊂ V for some r1, r2 > 0. Let s = min r1, r2. Then we have Bd(w; s) ⊂
Bd1(x1; r1)×Bd2(x2; r2) ⊂ U × V ⊂ W . Hence W is open in the metric topology on X.

Conversely suppose W is open in the metric topology on X . Let w = (x1, x2) ∈ W .

Then we have Bd(w; s) ⊂W for some s > 0. Moreover, we have Bd1(x1; s)×Bd2(x2; s) ⊂
Bd(w; s) ⊂ W and hence w ∈ U × V ∈ W , for U = Bd1(x1; s), V = Bd2(x2; s). Hence W

is open in the product topology.

Example A special case of the above is that the natural topology on R 2 = R × R is
the product topology and more generally the natural topology on R n = R n−1 × R is the

product topology.

There is an amusing characterization of Hausdorff spaces in terms of the product topol-

ogy.

(3.3c) Let X be a topological space. Define the diagonal ∆ = {(x, x) |x ∈ X}, a subset

of X ×X . The space X is Hausdorff if and only if ∆ is a closed set in X ×X.

Proof (⇒) Assume X is Hausdorff and prove ∆ closed. We have to show

J = CX×X(∆) = {(x1, x2) |x1 6= x2} is open.
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So let w = (x1, x2) ∈ J . Then x1 6= x2 so there exist open sets U, V in X such that

x1 ∈ U , x2 ∈ V and U
⋂
V = ∅. We claim that U × V ⊂ J . If not there exists some

element (t, t) ∈ U × V (with t ∈ X) but then t ∈ U
⋂
V , and since U

⋂
V = ∅ this is

impossible. So U ×V ⊂ J . We have shown that for each w ∈ J there exists open sets U, V

such that w ∈ U × V ⊂ J . Hence J is open (by the definition of the product topology on

X ×X) and so ∆ is closed.

(⇐) We assume ∆ is closed and prove X is Hausdorff. Thus J = CX×X(∆) is open. Let

x1, x2 ∈ X with x1 6= x2. Then (x1, x2) ∈ J and J is open so there exist open sets U, V

such that (x1, x2) ∈ U × V ⊂ J . Now x1 ∈ U , x2 ∈ V and U
⋂
V = ∅ (for if t ∈ U

⋂
V

then (t, t) ∈ U × V ∈ J and J is the set of all elements (a, b) ∈ X ×X such that a 6= b so

this is impossible).

There is another, more important relationship between the product construction and

the Hausdorff property.

(3.3d) Proposition X × Y is Hausdorff if and only if both X and Y are Hausdorff.

Proof (⇒) We assume X×Y is Hausdorff and prove X and Y are Hausdorff. Suppose

that x, x′ ∈ X with x 6= x′. Choose y ∈ Y . Then there are open set W,W ′ in X × Y such

that (x, y) ∈ W , (x′, y) ∈ W ′ and W
⋂
W ′ = ∅. Since W is open there exist open sets U

in X and V in Y such that (x, y) ∈ U × V ⊂W , and similarly there exist open sets U ′ in

X and V ′ in Y such that (x′, y) ∈ U ′ × V ′ ⊂W ′. We have

(U × V )
⋂

(U ′ × V ′) ⊂W
⋂

W ′ = ∅

so that (U
⋂
U ′) × (V

⋂
V ′) = ∅. Now if t ∈ U

⋂
U ′ then (t, y) ∈ (U

⋂
U ′) × (V

⋂
V ′) so

there are is no such element t, i.e. U
⋂
U ′ = ∅. Thus for x, x ∈ X with x 6= x′ we have

produced open sets U,U ′ such that x ∈ U , x′ ∈ U ′ and U
⋂
U ′ = ∅. Hence X is Hausdorff.

Similarly Y is Hausdorff.

(⇐) Now suppose X and Y are Hausdorff. Let w = (x, y), w′ = (x′, y′) ∈ X × Y with

w 6= w′. Then x 6= x′ or y 6= y′. We assume x 6= x′. (The other case is similar.) Then

there exist open sets U,U ′ in X with x ∈ U , x′ ∈ U ′ and U
⋂
U ′ = ∅. Put W = U ×X ,

W ′ = U ′×Y . Then w ∈W,w ∈W ′ and W
⋂
W ′ = (U×Y )

⋂
(U ′×Y ) = (U

⋂
U ′)×Y = ∅.

Hence X × Y is Hausdorff.
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Definition Let X,Y be topological spaces. The map p : X × Y → X, p(x, y) = x, is

called the canonical projection onto X and the map q : X ×Y → Y is called the canonical

projection onto Y .

When is a map f : Z → X × Y continuous ?

(3.3e) Proposition Let X,Y be topological spaces.

(i) The projection maps p : X × Y → X and q : X × Y → Y are continuous.

(ii) A map f : Z → X ×Y (where Z is a topological space) is continuous if and only if the

maps p ◦ f : Z → X and q ◦ f : Z → Y are continuous.

Proof (i) Let U be an open set in X . Then p−1U = {(x, y) | p(x, y) ∈ U} = {(x, y) |x ∈
U} = U × Y is open in X × Y . Hence p is continuous. Similarly q is continuous.

(ii) (⇒) If f : Z → X ×Y is continuous then p◦ f : Z → X is a composite of continuous

maps and hence continuous. Similarly q ◦ f is continuous.

(⇐) Suppose that p ◦ f : Z → X and q ◦ f : Z → Y are continuous. We must prove that

f is continuous. So let W be an open set in X ×Y . Then we can write W =
⋃
i∈I Ui ×Vi,

for open sets Ui in X and Vi in Y . We need to show that f−1W is open in Z. We have

f−1W = f−1(
⋃

i∈I
Ui × Vi) =

⋃

i∈I
f−1(Ui × Vi)

so if each f−1(Ui × Vi) is open then f−1W will be a union of open sets, hence open. Thus

it suffices to prove that for U open in X and V open in Y the set f−1(U × V ) is open in

Z.

Now we have

f−1(U × V ) = {z ∈ Z | f (z) ∈ U × V }

= {z ∈ Z | pf (z) ∈ U and qf (z) ∈ V }

= (p ◦ f)−1U
⋂

(q ◦ f )−1V
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an intersection of two open sets and hence open.

Example Consider a function f : R → R 2, f(t) = (f1(t), f2(t)) for functions f1, f2 :

R → R . Then f1 = p ◦ f , f2 = q ◦ f so f is continuous if and only if both f1 and f2 are

continuous.

For example f (t) = (t2 − t, t3) is continuous since f1(t) = t2 − t and f2(t) = t3 are

continuous.

(3.3f) For topological spaces X,Y the map φ : X × Y → Y ×X, φ(x, y) = (y, x) is a

homeomorphism.

Proof We have the canonical projections p : X ×Y → X, q : X ×Y → Y . We also have

the canonical projections p′ : Y ×X → Y , q′ : Y ×X → X.

Now p′ ◦ φ(x, y) = p′(y, x) = y = q(y) so that p′ ◦ φ = q. In particular p′ ◦ φ is

continuous. Similarly q′ ◦ φ is continuous. Hence φ is continuous by (3.3d).

Let ψ : Y ×X → X × Y be the map given by ψ (y, x) = (x, y). Then p ◦ ψ = q′ and

q ◦ ψ = p′ are continuous and hence ψ is continuous, again by (3.3d).

Thus φ is a bijection (its inverse is ψ ), it is continuous and has continuous inverse

(namely ψ ). Hence φ is a homeomorphism.

We want to show that if X and Y are compact then X×Y is compact. It is convenient

to use the idea of a basis in the proof.

Definition Let X be a topological space with topology T . A basis B is a subset of T
(i.e. B is a collection of open sets) such that every open set U ∈ T is a union of open

sets in B, i.e. for any U ∈ T there exists an indexing set I and a collection of open sets

{Ui | i ∈ I} in B such that U =
⋃
i∈I Ui.

Example The natural topology on R has as a basis the set of open intervals, i.e. B =

{(a, b) | a < b} is a basis. In general in a metric space X the sets of the form B(x; r), with

x ∈ X and r > 0 form a basis for the topology defined by the metric.

For a discrete space X the one-element sets {x} form a basis, i.e. B = {{x} |x ∈ X}
is a basis since, for any U in X we have U =

⋃
x∈U{x}.

The set of open sets B = {U × V |U is open in X and V is open in Y} forms a basis

(by the definition of the product topology as the sets of which are unions of sets of this

form).
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Definition If (X,T ) is a topological space and B ⊂ T is a basis then the sets U ∈ B
are called the basic open sets.

(3.3g) Lemma Let X be a topological space with topology T and basis B. Then X is

compact if and only if every open cover of X by basic open sets has a finite subcover.

Proof (⇒) Clear.

(⇐) Suppose every open cover of X by basic open sets has a finite subcover. We must

show that X is compact. So let X =
⋃
i∈I Ui be any open cover. For each x ∈ X we

have x ∈ Ui for some i ∈ I , call this ix, so x ∈ Uix . Now Uix is a union of basic open

sets so there exists some basic open set Vx with x ∈ Vx ⊂ Uix . Now X =
⋃
x∈X Vx (since

⋃
x∈X Vx contains all points of X). Hence {Vx |x ∈ X} is an open cover by basic open

sets. Thus, by hypothesis, there exists some finite subset F of X such that X =
⋃
x∈F Vx,

i.e. X = Vx1

⋃
· · ·

⋃
Vxn where F = {x1, . . . , xn}. But Vx ⊂ Uix so that, putting jr = ixr ,

we have Vxr ⊂ Ujr , for 1 ≤ r ≤ n. Hence

X = Vx1

⋃
· · ·

⋃
Vxn ⊂ Uj1

⋃
· · ·

⋃
Ujn .

Hence

X = Uj1
⋃
· · ·

⋃
Ujn

and {Uj1 , . . . , Ujn} is a finite subcover of {Ui | i ∈ I}. Hence X is compact.

We are now ready for the big one.

(3.3h) Theorem X × Y is compact if and only if both X and Y are compact.

Proof (⇒) If X ×Y is compact then X = p(X × Y ) and Y = q(X ×Y ) are compact by

(3.2h).

(⇐) We assume X and Y are compact. We must show that X × Y is compact. Let B be

the set of subsets of X × Y of the form U × V with U open in X and V open in Y . By

(3.3g), to show X × Y is compact, it suffices to prove that whenever

X × Y =
⋃

i∈I
Ui × Vi (1)

then we have X × Y =
⋃
i∈F Ui × Vi for some finite subset F of I .
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So let’s suppose (1) holds. For x ∈ X we set Ix = {i ∈ I | x ∈ Ui}. Then

Y =
⋃

i∈Ix
Vi (2).

The argument for this is as follows. If y ∈ Y then (x, y) ∈ X × Y so (x, y) ∈ Ui × Vi for

some i ∈ I . Then x ∈ Ui so i ∈ Ix and y ∈ Vi so that y ∈ Vi for some i ∈ Ix. Hence

y ∈ ⋃
i∈Ix Vi and since y was any element of Y we must have Y =

⋃
i∈Ix Vi.

Since Y is compact there is a finite subset Fx of Ix such that

Y =
⋃

i∈Fx
Vi (3).

We define U(x) =
⋂
i∈Fx Ui. Then U(x) is an intersection of finitely many open sets and

hence open. Also, x ∈ Ui so for each i ∈ Fx so that x ∈ U(x). Hence we have

X =
⋃

x∈X
U(x) (4).

Since X is compact we have

X = U(x1)
⋃

U(x2)
⋃
· · ·

⋃
U(xn) (5)

for finitely many elements x1, x2, . . . , xn of X . We now clain that

X × Y =
⋃

i∈F
Ui × Vi (6).

where F = Fx1

⋃
Fx2

⋃
· · ·

⋃
Fxn - a finite set, showing X × Y to be compact.

So let’s prove this claim. Let (x, y) ∈ X×Y . Then by (5) we have x ∈ U(xr) for some

1 ≤ r ≤ n. Now by (3) we have y ∈ Vi0 , for some i0 ∈ Fxr , and since U(xr) =
⋂
i∈Fxr Ui, we

also have x ∈ Ui0 . Hence (x, y) ∈ Ui0×Vi0 and i0 ∈ Fxr ⊂ F so that (x, y) ∈ ⋃
i∈F Ui×Vi,

as required.

Phew, that was complicated.

Let X, Y be topological space and let X ′ ⊂ X and Y ′ ⊂ Y be subspaces. Then X ′

(resp. Y ′) is a topological space with the induced topology. So we may form the product

space X ′ × Y ′. But we may also regard X ′ × Y ′ as a topological space via the subspace

topology induced from X × Y . Are these topologies on X ′ × Y ′ the same ? Yes!
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(3.3i) Proposition In the above situation, the product topology on X ′ × Y ′ and the

subspace topology on X ′ × Y ′ (given by viewing X ′ × Y ′ as a subspace of the product

space X × Y ) coincide.

Proof Let U ′ be open in X ′ and V ′ be open in Y ′. Thus we have U ′ = U
⋂
X ′ and

V ′ = V
⋂
Y ′ for some open set U in X and open set V in Y . Thus

U ′ × V ′ = (U
⋂

X ′) × (V
⋂

Y ′) = (U × V )
⋂

(X ′ × Y ′)

which is an open set in the subspace topology on X ′× Y ′ (since U × V is open in X × Y ).

Hence any set of the form U ′ × V ′ (with U ′ open in the subspace topology on X ′ and V ′

open in the subsapce topology on Y ′). Any open set in the product topology on X ′ × Y ′

is a union of set of this from, hence any subset of X ′ × Y ′ which is open in the product

topology on X ′ ×Y ′ is a union of sets which are open in the subspace topology and hence

open in the subspace topology.

Conversey suppose that W ′ is open in the subspace topology on X ′ × Y ′. Then we

have W ′ = (X ′ × Y ′)
⋂
W , where W is open in X × Y . Now W is a union of sets of the

form U × V , with U open in X and V open in Y . Hence W ′ is a union of sets of the form

(X ′ × Y ′)
⋂

(U × V ). However this is (X ′ × U)
⋂

(Y ′
⋂
V ) = U ′× V ′, where U ′ = X ′⋂U ,

V ′ = Y ′
⋂
V . Now U ′ is open in the subspace topology on X ′ and V ′ is open in the

subspace topology on Y ′ so that U ′×V ′ is open in the product topology on X ′×Y ′. Thus

W ′ is a union of sets which are open in the product topology on X ′ × Y ′ and hence W ′ is

open in the product topology.

We have shown that a subset of X ′ × Y ′ is open in the product topology if and only

if it is open in the subspace topology (induced from the product topology on X × Y ), as

required.

Example Let a, b, c, d ∈ R with a < b and c < d and let Z = {(x, y) | a ≤ x ≤ b, c ≤ y ≤
d}. This is the subset [a, b]× [c, d] of R × R . The subspace topology on Z, as a subspace

of R × R = R 2, is the same as the product topology on Z. Note, by (3.2j) and (3.3h),

[a, b]× [c, d] is compact.

(3.3j) Let X,Y be topological spaces and let K ⊂ X be closed and let L ⊂ Y be closed.

Then K × L is a closed subset of X × Y .
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Proof We have

CX×Y (K × L) = {(x, y) ∈ X × Y | x 6∈ K or y 6∈ L}

(CX(K)× Y )
⋃

(X × CY (L))

a union of two open sets and hence open in X × Y . Hence K × L is closed.

Definition A topological space X is said to be locally compact if for each x ∈ X there

exists an open set U and a closed set K with x ∈ U ⊂ K and K compact.

Example R is locally compact. For x ∈ R take U = (x−1, x+1) and K = [x−1, x+1].

Exercise Show that local compactness is a topological property.

(3.3k) Proposition If X,Y are locally compact spaces then X × Y is locally compact.

Proof Let w = (x, y) ∈ X×Y . Since X is locally compact there exists U open K closed

and compact with x ∈ U ⊂ K. Since Y is locally compact there exists V open and L

closed and compact with y ∈ V ⊂ L. Thus we have

w = (x, y) ∈ U × V ⊂ K × L

moreover U × V is open K × L is closed, by (3.3j), and K × L is compact, by (3.3h) and

(3.3j).

We want to show that R n is locally compact, which will imply the Heine-Borel Theo-

rem. But first a general lemma on metric spaces.

(3.3l) Lemma Let (X, d), (X ′, d′) be metric spaces and let φ : X → X ′ be a map

such that d′(φ(x1), φ(x2)) = d(x1, x2) for all x1, x2 ∈ X . Then φ is continuous. If φ is a

bijection then φ is a homeomorphism.

Proof φ is continuous by (2.1d). Suppose φ is a bijection with inverse ψ . Then we have

d(ψ (x′1), ψ (x′2)) = d′(φ(ψ (x′1), φ(ψ (x′2)) = d′(x′1, x
′
2) so that ψ is continuous by the first

part of the Lemma (with the roles of d and d′ reversed). Thus φ is a continuous bijection

with continuous inverse. Hence φ is a homeomorphism.

Exercise Let (X1, d1) and (X2, d2) be metric spaces. Let X = X1 × X2 and define

d : X × X → R by d((x1, x2), (y1, y2)) = max{d1(x1, y1), d2(x2, y2)}, for (x1, x2) ∈ X ,
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(y1, y2) ∈ X. Show that d is a metric and that the topology defined by d is the product

topology on X1 ×X2.

(3.3m) Proposition For n > 1 the product space R n−1 × R is homeomorphic to R n,

regarded as a topological space with the natural topology.

Proof (Note we have already done the case n = 2, see the Example following (3.3b).)

An element of R n−1 × R is an element (w, z) with w ∈ R n−1, z ∈ R . The natural

topology on R n−1 is the topology defined by any one of the metrics on R n−1 considered in

Section 2.1 (see (2.1c)). The most convenient for our purposes is

d1(w, w
′) = max{|x1 − x′1|, . . . , |xn−1 − x′n−1|}

for w = (x1, . . . , xn−1), w
′ = (x1, . . . , x

′
n−1). The topology on R is determined by the

metric d2(x, x
′) = |x−x′|. By the above exercise the product topology on R n−1×R is the

same as the topology determined by the metric

d((w, x), (w′, x′)) = max{d1(w,w
′), d2(x, x

′)}

= max{max{|xi − x′i| : 1 ≤ i ≤ n− 1}, |x− x′|}.

The natural topology on R n is defined by the metric d′, where

d′((x1, . . . , xn), (x′1, . . . , x
′
n)) = max{|xi − x′i| : 1 ≤ i ≤ n}.

We define φ : R n−1 × R → R n by φ((x1, . . . , xn−1), x) = (x1, . . . , xn−1, x). Then, for

w = ((x1, . . . , xn−1, x), z = ((y1, . . . , yn−1), y) ∈ R n−1 × R we have

d′(φ(w), φ(z)) = d′((x1, . . . , xn−1, x), (y1, . . . , yn−1, y))

= max{max{|xi − yi| : 1 ≤ i ≤ n− 1}, |x− y|}

= d(w, z).

Hence d′(φ(w), φ(z)) = d(w, z). Hence φ is continuous, by (3.3l). Clearly φ is a

bijection and hence, by (3.3l), φ is a homeomorphism.

(3.3n) Proposition R n is locally compact.

Proof We argue by induction on n. The space R is locally compact (see the example

after the definition of local compactness). Assume now that n > 1 and that R n−1 is locally
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compact. Then R n is homeomorphic to R n−1 × R , by (3.3k). Hence by induction, R n is

locally compact for all n ≥ 1.

(3.3o) Proposition For any N > 0 the set L = {(x1, . . . , xn) : |xi| ≤ N for all i} is a

compact space.

Proof Let d be the metric d((x1, . . . , xn), (y1, . . . , yn)) = max{|xi − yi| : 1 ≤ i ≤ n}.
This defines the natural topology on R n. Since R n is locally compact there exists an open

set U containing 0 = (0, 0, . . . , 0) and a closed set Z with 0 ∈ U ⊂ Z and Z compact.

Since U is open we have B(0; r) ⊂ U for some r > 0. Let E = {y ∈ R n | d(0; y) ≤ r/2}.
Then E is closed and E ⊂ B(0; r) ⊂ U ⊂ Z so that E ⊂ Z. Now Z is compact and E is a

closed subset of Z so E is compact, by (3.2c).

We define φ : R n → R n by φ((x1, . . . , xn)) = ( N
r/2x1, . . . ,

N
r/2xn). This is a continuous

map with continuous inverse ψ ((x1, . . . , xn)) = ( r/2
N
x1, . . . ,

r/2
N
xn). So φ is a homeo-

morhism. The restriction of φ to E gives a homeomorphism E → L (with inverse the

restriction of φ to L). Hence E is homeomorphic to L and since E is compact, L is too,

as required.

(3.3p) Heine-Borel Theorem A subset Z of R n is compact if and only if Z is closed

and bounded.

Proof (⇒) Done already, see (3.2d) and (3.2f).

(⇐) Suppose Z is closed and bounded. Then Z is a subset of

K = {(x1, . . . , xn) : |xi| ≤ N}

for some N > 0. But K is compact by (3.3o) and so Z is a closed subset of a compact

space and hence compact, by (3.2c).

(3.3q) Corollary Let K be a closed, bounded subset of R n and let f : K → R be a

continuous function. Then f is bounded and attains its bounds.

Proof See the proof of (3.2m).
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