
1 Introduction and Basic Concepts

Graph Theory is a new and active branch of mathematics. Its origins can
be traced back to Euler’s work on the Königsberg bridges problem in 1766.
However, a comprehensive theory only began to develop in the last hun-
dred years. The first book on graph theory, Theorie der endlichen und
unendlichen Graphen by D. König, was published in 1935. Since the 1940s,
a major stimulus for the development of graph theory has been to provide
efficient algorithms for solving network problems in operational research.

This module is intended to be an introduction to the theory of graphs and
how it can be used to solve optimization problems in networks. One of the
most appealing aspects of graph theory is that abstract ideas in the theory
can be illustrated by drawings. You should develop the habit of drawing
pictures of graphs to investigate and illustrate the problems, concepts and
algorithms given in the course.

1.1 Formal definition of a graph

A graph G is an ordered pair (V (G), E(G)) where V (G) and E(G) are dis-
joint sets, called the vertices and edges of G, respectively, together with an
incidence function f which associates an unordered pair of (not necessarily
distinct) vertices {u, v} with each edge e of G. When f(e) = {u, v} we shall
say that:

• e is incident with u and v,

• u and v are the end vertices of e, and

• u and v are adjacent.

Henceforth we shall use the above three statements rather than referring
explicitly to the incidence function.

1.2 Pictorial Representation of a Graph

We represent the graph G by a drawing in the plane with the vertices rep-
resented by points and each edge e by a line between the two points corre-
sponding to its end vertices.

Example 1.2 Let G be the graph with the following formal definition:
V (G) = {v1, v2, v3, v4}, E(G) = {e1, e2, e3.e4, e5, e6}, and incidence func-
tion f given by f(e1) = {v1, v4}, f(e2) = {v1, v4}, f(e3) = {v2, v4}, f(e4) =
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{v2, v3}, f(e5) = {v1, v2}, f(e6) = {v3, v4}, f(e7) = {v2, v2}. Then two pos-
sible pictorial representations for G are:
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1.3 Matrix Representation of a Graph

We represent the graph G by a matrix M(G) with rows indexed by V (G)
and columns indexed by E(G). For v a vertex of G and e an edge of G, the
entry in the row labelled by v and column labelled by e is equal to 2 if both
end vertices of e are equal to v, is equal to 1 if exactly one end vertex of
e is equal to v and is equal to 0 otherwise. The matrix M(G) is called the
incidence matrix of G.

Example 1.3 Let G be the graph from Example 1.2 Then the incidence
matrix of G is:

M(G) =

e1 e2 e3 e4 e5 e6

v1 1 1 0 0 1 0
v2 0 0 1 1 1 0
v3 0 0 0 1 0 1
v4 1 1 1 0 0 1
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1.4 Definition

A loop in a graph G is an edge with both its end vertices the same. A
multiple edge in G is a set of two or more edges with the same end vertices.
We say that G is simple if G has no loops and no multiple edges.

1.5 Definitions

A walk in a graph is an alternating sequence of vertices and edges such that
each edge is preceded by one of its end vertices and followed by its other end
vertex. Given a walk W = x0e1x1e2 . . . emxm we say that W is a walk from

x1 to xm. Given a walk W1 from u to v and a walk W2 from v to x, we use
W1W2 to denote the walk from u to x we obtain by first traversing W1 then
W2. A trail is a walk which does not repeat edges. A path is a walk which
does not repeat vertices or edges. A walk is closed if it starts and ends with
the same vertex. A tour is a closed trail. A cycle is a tour which contains at
least one edge and does not repeat vertices, except when the first vertex is
repeated as the last vertex. The length of a walk is equal to the number of
edges in the sequence, counting repeated edges the appropriate number of
times. Thus, in Example 1.2 we have W = v1e5v2e5v1e2v4 is a walk of length
three, T = v1e5v2e7v2e3v4e2v1 is a tour of length four, P = v1e5v2e3v4 is
a path of length two, and C = v1e5v2e3v4e2v1 is a cycle of length three.
If G is simple then we can unambiguously represent a walk as a sequence
of vertices. In particular, we can uniquely represent an edge e of a simple
graph by its pair of end vertices and write e = uv.

1.6 Definition

A directed graph or digraph D is a graph in which each edge e has been
given a fixed direction from one end vertex u to its other end vertex v. We
call directed edges arcs, and use A(D) to denote the set of arcs of D. We
say that

• e is an arc from u to v, and

• u is the tail of e and v is the head of e.

A directed walk in a digraph D is a walk in which each arc is preceded by
its tail and followed by its head.
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1.7 Definition

A network is a graph or digraph in which to each edge e we associate a real
number w(e) called the weight of e. The length of a walk in a network is
the sum of the weights of its edges, counting repeated edges the appropriate
number of times.

1.8 Definitions

A graph H is a subgraph of a graph G if V (H) ⊆ V (G), E(H) ⊆ E(G) and
each e ∈ E(H) has the same end vertices in H and G. If H is a subgraph
of G then we say H is a proper subgraph of G if H 6= G and that H is a
spanning subgraph of G if V (H) = V (G). Let G1 and G2 be two subgraphs
of G. Then

• G1∪G2 denotes the subgraph of G with V (G1∪G2) = V (G1)∪V (G2)
and E(G1 ∪ G2) = E(G1) ∪ E(G2).

• G1∩G2 denotes the subgraph of G with V (G1∩G2) = V (G1)∩V (G2)
and E(G1 ∩ G2) = E(G1) ∩ E(G2).

1.9 Definition

A graph G is connected if every pair of vertices of G are joined by a walk. The
connected components of a graph G are the maximal connected subgraphs
of G, where a connected subgraph is maximal if it is not a proper subgraph
of any other connected subgraph of G.

Example 1.9 Consider the following graph G.
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Then G has the three connected components G1, G2 and G3 given below.
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We will show that every graph is the disjoint union of its connected
components. We need the following lemma.

1.10 Lemma

Let G1, G2 be connected subgraphs of a graph G such that V (G1)∩V (G2) 6=
∅. Then G1 ∪ G2 is connected.
Proof Suppose x ∈ V (G1) ∩ V (G2). Choose vertices u and v of G1 ∪ G2.
If u and v both belong to G1 (or G2) then, since G1 is connected, we can
find a walk in G1 joining u and v. On the other hand, if u ∈ V (G1) and
v ∈ V (G2) then we can find a walk W1 in G1 from u to x, and a walk W2

in G2 from x to v. Then W1W2 is a walk from u to v in G1 ∪ G2. Thus, in
all cases, G1 ∪ G2 contains a walk from u to v. Since u and v are arbitrary
vertices of G1 ∪ G2, it follows that G1 ∪ G2 is connected.

1.11 Lemma

Let G1, G2, . . . , Gm be the connected components of a graph G. Then
(a) {V (G1), V (G2), . . . V (Gm)} is a partition of V (G) and
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(b) {E(G1), E(G2), . . . , E(Gm)} is a partition of E(G).
Proof (a) Since each vertex of G belongs to a connected subgraph, each
vertex belongs to a connected component and hence we have

m⋃

i=1

V (Gi) = V (G).

Suppose V (Gi) ∩ V (Gj) 6= ∅ for some 1 ≤ i < j ≤ m. Then Gi ∪
Gj is connected by Lemma 1.10. This contradicts the fact that Gi and
Gj are supposed to be connected components, and hence maximal con-
nected subgraphs, of G. The only alternative is that V (Gi) ∩ V (Gj) =
∅. Thus each pair of connected components of G are vertex disjoint and
{V (G1), V (G2), . . . , V (Gm)} is a partition of V (G).

(b) Since each edge belongs to a connected subgraph of G we have

m⋃

i=1

E(Gi) = E(G).

Suppose e ∈ E(Gi)∩E(Gj) for some 1 ≤ i < j ≤ m. Let u be an end vertex
of e. Then u ∈ V (Gi) ∩ V (Gj). This contradicts (a). Thus any two con-
nected components of G are edge-disjoint and {E(G1), E(G2), . . . , E(Gm)}
is a partition of E(G).

1.12 Definition

A digraph D is strongly connected if, for each ordered pair of vertices u and
v of D, there is a directed walk from u to v in D. The strongly connected

components of D are the maximal strongly connected subdigraphs of D.

Example 1.12
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D is not strongly connected since there is no directed walk from v3 to
v2. It has the following three strongly connected components:
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We can show that the strongly connected components of a digraph are
pairwise disjoint in a similar way as we did for graphs.

1.13 Lemma

Let D1, D2 be stongly connected subdigraphs of a digraph D such that
V (D1) ∩ V (D2) 6= ∅. Then D1 ∪ D2 is strongly connected.

Proof Exercise.

1.14 Lemma

Let D1, D2, . . . , Dm be the strongly connected components of a digraph D.
Then {V (D1), V (D2), . . . V (Dm)} is a partition of V (D).

Proof Exercise.

1.15 Remark

It is not true in general that {A(D1), A(D2), . . . , A(Dm)} is a partition of
A(D) since D may have arcs which belong to none of its strongly connected
components, see Example 1.12.

1.16 Lemma

(a) Let G be a graph and u, v be distinct vertices of G. If G has a walk
from u to v then G has a path from u to v.

(b) Let D be a digraph and u, v be distinct vertices of D. If D has a
directed walk from u to v then D has a directed path from u to v.
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Proof (a) Choose a walk W from u to v in G such that W is as short as
possible. Let W = v0e1v1 . . . emvm, where v0 = u and vm = v. Suppose
W is not a path. Then either some edge or some vertex is repeated in W .
If ei = ej for some 1 ≤ i < j ≤ m then we have {vi−1, vi} = {vj−1, vj}.
So either vi = vj , or vi = vj−1 and vi−1 = vj . In both cases we also have
some vertex repeated in W . Thus we may assume that vi = vj for some
0 ≤ i < j ≤ m. Let W1 = v0e1v1 . . . eivi be the section of W from v1 to
vi and W2 = vjej+1vj+1 . . . emvm be the section of W from vj to vm. Then
W1W2 is a walk from v0 = u to vm = v in G which is shorter than W . This
contradicts the choice of W . Hence W must be a path.

(b) The proof is similar to that of (a),

1.17 Corollary

(a) A graph G is connected if and only if all pairs of vertices of G are
joined by a path.

(b) A digraph D is connected if and only if all ordered pairs of vertices of
D are joined by a directed path.

Proof This follows immediately from Lemma 1.16.

1.18 Definition

Let G be a graph and v ∈ V (G). The degree of v is the number of edges of
G incident with v, counting each loop twice. We denote this by dG(v), or
d(v) when it is obvious to which graph we are referring.

1.19 Lemma (The handshaking lemma)

In every graph G we have
∑

v∈V (G) d(v) = 2|E(G)|.

Proof Let e be an edge of G with end vertices x and y. If e is not a loop
then x 6= y and e contributes one to d(x) and one to d(y). Thus e contributes
two to

∑
v∈V (G) d(v). If e is a loop then x = y and e contributes exactly

two to both d(x) and to
∑

v∈V (G) d(v). Thus all edges of G contribute 2 to∑
v∈V (G) d(v), and hence

∑
v∈V (G) d(v) = 2|E(G)|.
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1.20 Definition

Let D be a digraph and u ∈ V (D). Then the out-degree of u is the number
of arcs in D with tail u. We denote this by d+

D(u) or more simply by d+(u).
We give similar definitions for the in-degree of u, d−

D(u) or d−(u).

1.21 Lemma

For any digraph D we have
∑

v∈V (D) d+(u) = |A(D)| =
∑

v∈V (D) d−(u).

Proof Exercise.
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