
5 Matchings

5.1 Matchings in general graphs

5.1.1 Definitions

Let G be a graph and M ⊆ E(G). Then M is a matching in G if no two edges
of M have a common end-vertex. We say that M is a maximum matching if
it has maximum cardinality over all matchings in G. A vertex v ∈ V (G) is
M -saturated if v is incident with an edge of M . We say that M is a perfect

matching in G if every vertex of G is M -saturated. Thus, if M is a perfect
matching, then |M | = 1

2 |V (G)| and M is necessarily a maximum matching. Let
match(G) denote the size of a maximum matching in G.

5.1.2 Example
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M1 = {v1v2, v5v6, v3v8} is a matching in G but is not maximum, M2 = {v1v2, v6v7, v5v8, v4v3}
is a perfect matching and hence is also maximum. Thus match(G) = 4. Vertex
v4 is M1-unsaturated but is M2-saturated.

5.1.3 Problem

Given a graph G, construct a maximum matching in G.

5.1.4 Definitions

Let G be a graph and U ⊆ V (G). We say that U is a cover of G if every edge
of G is incident with a vertex in U . We say that U is a minimum cover if it
has minimum cardinality over all covers of G. Let cov(G) denote the size of a
minimum cover of G.
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5.1.5 Example

In the graph G of Example 5.1.2, U1 = {v1, v2, v4, v5, v7, v8} and U2 = {v1, v3, v5, v7}
are both covers of G. We have cov(G) ≤ |U2| = 4.

5.1.6 Lemma

Let G be a graph. Then match(G) ≤ cov(G).

Proof Let M be a maximum matching in G, and U be a minimum cover of G.
Since U is a cover of G each edge of M is incident with a vertex in U . Since M is
a matching, no two edges in M have a common end vertex. Thus we need at least
|M | vertices to cover all edges of M . Hence match(G) = |M | ≤ |U | = cov(G).

Lemma 5.1.6 has the following immediate corolly.

5.1.7 Corollary

Let G be a graph. If G has a matching M and a cover U such that |M | = |U |,
then M is a maximum matching in G and U is a minimum cover of G.

Proof We have

match(G) ≥ |M | = |U | ≥ cov(G). (7)

On the other hand, Lemma 5.1.6 implies that match(G) ≤ cov(G). Thus equal-
ity must hold throughout (7). Hence match(G) = |M | and cov(G) = |U |.

Since we have |M2| = 4 = |U2| in the graph G of Examples 5.1.2 and 5.1.5,
Corollary 5.1.7 implies that |M2| is a maximum matching in G and |U2| is a
minimum cover of G.

5.1.8 Note

It is not true that we must have equality in Lemma 5.1.6 for all graphs. Con-
sider the following graph G.

u u

u

It is easy to check that match(G) = 1 and cov(G) = 2.

5.1.9 Definitions

Let M be a matching in a graph G. An M -alternating path in G is a path
whose edges alternate between M and E(G) − M . An M -augmenting path in
G is an M -alternating path whose end vertices are M -unsaturated. Thus in
Example 5.1.2, P = v4v1v2v7 is an M1-augmenting path in G. We shall see
that M -alternating paths play a similar role to that of f -unsaturated paths in
Chapter 3.
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5.1.10 Notation

Given two sets A and B, let A4B = (A − B) ∪ (B − A) denote the symmetric

difference between A and B.

5.1.11 Lemma

Let M be a matching in a graph G. Suppose G has an M -augmenting path P .
Then G has a matching M ′ with |M ′| = |M | + 1.

Proof Let M ′ = M4E(P ). Since the ends of P are M -unsaturated, M ′ is a
matching in G and |M ′| = |M | + 1.

5.1.12 Theorem (J. Petersen, 1891)

Let M be a matching in a graph G. Then M is a maximum matching in G if
and only if G has no M -augmenting path.

Proof (a) Necessity Suppose M is a maximum matching in G. Then Lemma
5.1.11 implies that G has no M -augmenting path.

(b) Sufficiency Suppose M is not a maximum matching and let M ′ be a match-
ing in G with |M ′| > |M |. Let S = M4M ′ and let H be the spanning subgraph
of G with E(H) = S. Since each vertex of G is incident with at most two edges
of S we have dH(v) ≤ 2 for all v ∈ V (H). Thus each component of H is either
a path or a cycle. Furthermore, since dH(v) = 2 if and only if v is incident
with an edge of M and an edge of M ′, it follows that the edges in the paths
and cycles of H alternate between M and M ′. In particular, we deduce that
each cycle of H has an even length. Since |M ′| > |M |, some component of H
must be a path which starts and ends with an edge of M ′. This path will be
the required M -augmenting path in G.

5.1.13 Remark

There is a polynomial algorithm, due to J. Edmonds (1965), which constructs
a maximum matching in a graph by searching for alternating paths. Unfortu-
nately, his algorithm is beyond the scope of this course. Instead, we will describe
a simpler algorithm which constructs maximum matchings in a special family
of graphs.

5.2 Matchings in Bipartite Graphs

5.2.1 Definition

A graph G is bipartite with bipartition {X, Y } if {X, Y } is a partition of V (G)
and all edges of G join vertices of X to vertices of Y .
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5.2.2 Lemma

A graph G is bipartite if and only if G contains no cycles of odd length.

Proof (a) Necessity Assume G is bipartite and let {X, Y } be a bipartition of
G. Suppose G contains a cycle C = v1v2 . . . v2m+1 of odd length. Then without
loss of generality, v1 ∈ X . This implies that v2 ∈ Y , v3 ∈ X , and so on. Thus
v2m+1 ∈ X . This is impossible since v1v2m+1 would be an edge of G incident
to two vertices of X .

(b) Sufficiency Assume G contains no cycles of odd length. Let H be a com-
ponent of G, v0 be a vertex of H , and T be a spanning tree of H rooted at
v0. Let X = {v ∈ V (H) : distT (v0, v) is even} and Y = {v ∈ V (H) :
distT (v1, v) is odd}. We will show that {X, Y } is a bipartition of H . Suppose
not. Without loss of generality there is an edge x1x2 in H with x1x2 ∈ X . Let
P1 be the path in T from v0 to x1 and P2 be the path in T from v0 to x2. Let
v0v1 . . . vm be the path which is common to both P1 and P2, P1[vm, x1] be the
segment of P1 from vm to x1, and P2[x2, vm] be the segment of P2 from x2 to
vm. Since P1 and P2 both have even length, P1[vm, x1]x1x2P2[x2, vm] is a cycle
in H of odd length. This is impossible. Hence {X, Y } is a bipartition of H .
Thus all components of G are bipartite. This implies that G is bipartite.

5.2.3 Theorem (D. König, 1931)

Let G be a bipartite graph. Then match(G) = cov(G).

Proof Let {X, Y } be a bipartition of G and let M be a maximum matching in
G. By Lemma 5.1.6, we have |M | = match(G) ≤ cov(G). Thus it suffices to
show that G has a cover U with |U | = |M |.

Let X0 be the set all M -unsaturated vertices in X and let W be the set of
all vertices of G which can be reached by M -alternating paths starting at X0.
Let X1 = X∩W , Y1 = Y ∩W , X2 = X−W and Y1 = Y ∩W . Put U = X2∪Y1.
We will show that U is a cover of G with |U | = |M |.

We first show that U is a cover of G. Suppose not. Let xy be an edge of G
which is not covered by U . Then x ∈ X1 and y ∈ Y2. Since x ∈ X1 = X ∩ W ,
there is an M -alternating path P = x0y1x1y2x2 . . . xmymx in G from a vertex
x0 ∈ X0 to x. Since x0 is M -unsaturated, x0y1 6∈ M . Since P is M -alternating,
we must have {y1x1, y2x2, . . . , ymx} ⊆ M . Now P ′ = x0y1x1y2x2 . . . xmymxy is
an M -alternating path from x0 to y. This contradicts the fact that y ∈ Y2 =
Y − W .

We next show that every vertex in U is M -saturated. Since X2 = X −X1 ⊆
X − X0 and X0 is the set of all M -unsaturated vertices in X , all vertices in
X2 are M -saturated. If some vertex y ∈ Y1 was M -unsaturated then the M -
alternating path from a vertex x0 ∈ X0 to y would be M -augmenting. This
would contradict the fact that M is a maximum matching in G by Lemma
5.1.11. Thus all vertices in U = X2 ∪ Y1 are M -saturated.

We next show that every edge in M is incident with a unique vertex of
U . Since U is a cover of G, every edge in M is incident with at least one
vertex of U . Suppose some edge xy ∈ M is incident with two vertices of U .
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Then x ∈ X2 and y ∈ Y1. Since y ∈ Y1 = Y ∩ W , there is an M -alternating
path Q = x0y1x1y2x2 . . . ym−1xmy in G from a vertex x0 ∈ X0 to y. Since
x0 is M -unsaturated, x0y1 6∈ M . Since Q is M -alternating, we must have
{y1x1, y2x2, . . . , ym−1xm} ⊆ M . Now Q′ = x0y1x1y2x2 . . . ym−1xmyx is an M -
alternating path from x0 to x. This contradicts the fact that x ∈ X2 = X −W .

We have shown that all edges of M are incident with a unique vertex of U
and all vertices of U are incident with a unique edge of M . Thus |U | = |M | and
match(G) = cov(G).

The above proof of König’s theorem gives rise to an algorithm for finding
a maximum matching and a minimum cover in a bipartite graph G. We start
with a given matching, and then iteratively increase the size of the matching
using augmenting paths. When we find a matching M for which their are no
augmenting paths we construct a cover U of G with |U | = |M | as described in
the above proof. We search for augmenting paths using the following concept.

5.2.4 Definition

Let G be a bipartite graph with bipartition {X, Y }. Let M be a matching in
G and X0 be the set of M -unsaturated vertices in X . An M -alternating forest

in G rooted at X0 is a forest F such that X0 ⊆ V (F ), each component of F
contains a unique vertex of X0, and each path in F is M -alternating. We say
that F is maximal if it is not contained in a larger M -alternating forest rooted
at X0.

5.2.5 König’s algorithm

We are given a bipartite graph G and a bipartition {X, Y } of G. We construct
a maximum matching M in G and a minimum cover U of G (with |M | = |U |).

Initial Step We construct a matching M1 in G by ‘greedily’ choosing edges
with no common end vertices until we cannot choose any more.

Iterative Step Suppose we have constructed a matching Mi in G for some
i ≥ 1. Let X0 be the set of Mi-unsaturated vertices in X . Grow a maximal
Mi-alternating forest rooted at X0, for example by depth first search.

• If some component T of F contains an Mi-unsaturated vertex other than
the root, then the unique path P in T from the root to this vertex is an
Mi-augmenting path. Put Mi+1 = Mi4E(P ) and iterate.

• If every component of F contains exactly one Mi-unsaturated vertex then
STOP. Put M = Mi and U = [X − V (F )] ∪ [Y ∩ V (F )] and output M
and U .

5.2.6 Example

Let G be the bipartite graph shown below.
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Let M1 = {x2y2, x3y3, x5y5}.
First iteration Grow an M1-alternating forest F1 rooted at the M1-unsaturated
vertices x1, x4.
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The component of F1 which contains x1 contains another M0-unsaturated
vertex y1. Let P1 = x1y2x2y1 and put

M2 = M14E(P1) = {x2y1, x1y2, x3y3, x5y5}.

Second iteration Grow an M2-alternating forest F2 rooted at the M2-unsaturated
vertex x4.
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T1 =
x4

y2 x1

y3 x3

No component of F2 contains an M2-unsaturated vertex other than its root.
Thus M2 is a maximum matching in G. Put U = (V (F2)−X)∪ (V (F2)∩X) =
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{x2, x5, y2, y3}. Then U is a minimum cover of G. We have |M2| = 4 = |U |.

5.2.7 Lemma

The time taken for König’s algorithm to construct a maximal matching and a
minimum cover in a graph G is O(|V (G)| × |E(G)|).

Proof The time taken to grow an alternating forest in each iteration of the
algorithm is O(|E(G)|). (To see this we suppose that we grow the forest F
using breadth first search and that the vertices of F are added in the or-
der u1, u2, . . . , ut. Then we first consider all edges incident to u1, then all
edges incident to u2, and so on. Thus the time taken is O(

∑
u∈V (G) dG(u)) =

O(2|E(G)|) = O(|E(G)|).) Since each iteration increases the size of the match-
ing, the number of iterations is at most b|V (G)|/2c. Hence the total running
time of the algorithm is O(|V (G)| × |E(G)|).

5.2.8 Remark

As noted in Remark 5.1.13, there is a polynomial algorithm due to Edmonds
(1965) which constructs a maximum matching in a graph which is not necessarily
bipartite. There is no known polynomial algorithm, however, for finding a
minimum cover in a graph which is not bipartite.

Matchings which saturate one side of the bipartition

Suppose G is a bipartite graph with bipartition {X, Y } where |X | ≤ |Y |. Since
X is a cover of G, every matching in G has size at most |X |, and every matching
of size |X | will saturate every vertex of X . We can use Konig’s Therem to deduce
a simple characterization of when G has such a matching. We need the following
concept.

5.2.9 Definition

Let G be a graph and S ⊆ V (G). Then the neighbour set of S, ΓG(S), is the
set of all vertices of G which are adjacent to at least one vertex of S.

5.2.10 Theorem (P. Hall, 1935)

Let G be a bipartite graph with bipartition {X, Y }. Then exactly one of the
following alternatives hold.
(a) G has a matching which saturates every vertex of X .
(b) There exists a set S ⊆ X such that |ΓG(S)| < |S|.
Proof Suppose G has a matching M which saturates X . Choose S ⊆ X . Since
each vertex of S is matched by an edge of M to a distinct vertex of Y , we must
have |ΓG(S)| ≥ |S|. Hence (b) cannot occur.

Suppose G does not have a matching which saturates X . Then match(G) <
|X |. Since match(G) = cov(G) by König’s Theorem, we have cov(G) < |X |.
Let U be a minimum cover of G and let S = X −U and T = Y ∩U . Since U is
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a cover of G, there are no edges in G from S to Y − T . Thus ΓG(S) ⊆ T . We
have

|X | > cov(G) = |U | = |U ∩ X | + |U ∩ Y | = |X − S| + |T | = |X | − |S| + |T |.

Thus |S| > |T | ≥ |ΓG(S)|, and (b) holds.

5.2.11 Note

The above proof is constructive. If G does not have a matching which saturates
X , then we can find a set S ⊆ X with |ΓG(S)| < |S| by constructing a minimum
cover U of G and putting S = X − U .

5.2.12 Example

The graph G of Example 5.2.6 has match(G) = 4 < |X | and hence does not
have a matching which saturates X . We have sen that U = {x2, x5, y2, y3} is
a minimum cover of G. Putting S = X − U = {x1, x3, x4} we have ΓG(S) =
{y2, y3} and |ΓG(S)| = 2 < 3 = |S|.
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