5 Matchings

5.1 Matchings in general graphs
5.1.1 Definitions

Let G be a graph and M C E(G). Then M is a matching in G if no two edges
of M have a common end-vertex. We say that M is a mazimum matching if
it has maximum cardinality over all matchings in G. A vertex v € V(G) is
M-saturated if v is incident with an edge of M. We say that M is a perfect
matching in G if every vertex of G is M-saturated. Thus, if M is a perfect
matching, then | M| = 1|V(G)| and M is necessarily a maximum matching. Let
match(G) denote the size of a maximum matching in G.

5.1.2 Example
U1 V2

Vg U7

Us U8

V4 V3
My = {v1v2, v506, V308 } is a matching in G but is not maximum, My = {v1v2, V67, V58, V4U3}
is a perfect matching and hence is also maximum. Thus match(G) = 4. Vertex
v4 is Mi-unsaturated but is Ms-saturated.

5.1.3 Problem

Given a graph G, construct a maximum matching in G.

5.1.4 Definitions

Let G be a graph and U C V(G). We say that U is a cover of G if every edge
of G is incident with a vertex in U. We say that U is a minimum cover if it
has minimum cardinality over all covers of G. Let cov(G) denote the size of a
minimum cover of G.
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5.1.5 Example

In the graph G of Example 5.1.2, Uy = {v1, v2,v4, 5, v7,v8} and Uz = {v1,v3,v5, 07}
are both covers of G. We have cov(G) < |Usz| = 4.

5.1.6 Lemma
Let G be a graph. Then match(G) < cov(G).

Proof Let M be a maximum matching in G, and U be a minimum cover of G.
Since U is a cover of G each edge of M is incident with a vertex in U. Since M is
a matching, no two edges in M have a common end vertex. Thus we need at least
| M| vertices to cover all edges of M. Hence match(G) = |M| < |U| = cov(G).

Lemma 5.1.6 has the following immediate corolly.

5.1.7 Corollary

Let G be a graph. If G has a matching M and a cover U such that |M| = |U]|,
then M is a maximum matching in G and U is a minimum cover of G.

Proof We have

match(G) > |M| = |U| > cov(G). (7)

On the other hand, Lemma 5.1.6 implies that match(G) < cov(G). Thus equal-
ity must hold throughout (7). Hence match(G) = |M| and cov(G) = |U|.

Since we have |Ms| = 4 = |Us| in the graph G of Examples 5.1.2 and 5.1.5,
Corollary 5.1.7 implies that |Ms| is a maximum matching in G and |Us| is a
minimum cover of G.

5.1.8 Note

It is not true that we must have equality in Lemma 5.1.6 for all graphs. Con-
sider the following graph G.

VAN

It is easy to check that match(G) = 1 and cov(G) = 2.

5.1.9 Definitions

Let M be a matching in a graph G. An M-alternating path in G is a path
whose edges alternate between M and F(G) — M. An M-augmenting path in
G is an M-alternating path whose end vertices are M-unsaturated. Thus in
Example 5.1.2, P = vqvivovy is an Mi-augmenting path in G. We shall see
that M-alternating paths play a similar role to that of f-unsaturated paths in
Chapter 3.
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5.1.10 Notation

Given two sets A and B, let AAB = (A — B) U (B — A) denote the symmetric
difference between A and B.

5.1.11 Lemma

Let M be a matching in a graph G. Suppose G has an M-augmenting path P.
Then G has a matching M’ with |M'| = M|+ 1.

Proof Let M’ = MAE(P). Since the ends of P are M-unsaturated, M’ is a
matching in G and |M'| = |M]| + 1.

5.1.12 Theorem (J. Petersen, 1891)

Let M be a matching in a graph G. Then M is a maximum matching in G if
and only if G has no M-augmenting path.

Proof (a) Necessity Suppose M is a maximum matching in G. Then Lemma
5.1.11 implies that G has no M-augmenting path.

(b) Sufficiency Suppose M is not a maximum matching and let M’ be a match-
ing in G with |M'| > |M|. Let S = MAM' and let H be the spanning subgraph
of G with E(H) = S. Since each vertex of G is incident with at most two edges
of S we have dy(v) < 2 for all v € V(H). Thus each component of H is either
a path or a cycle. Furthermore, since dy(v) = 2 if and only if v is incident
with an edge of M and an edge of M’, it follows that the edges in the paths
and cycles of H alternate between M and M’. In particular, we deduce that
each cycle of H has an even length. Since |M'| > |M|, some component of H
must be a path which starts and ends with an edge of M’. This path will be
the required M-augmenting path in G.

5.1.13 Remark

There is a polynomial algorithm, due to J. Edmonds (1965), which constructs
a maximum matching in a graph by searching for alternating paths. Unfortu-
nately, his algorithm is beyond the scope of this course. Instead, we will describe
a simpler algorithm which constructs maximum matchings in a special family
of graphs.

5.2 Matchings in Bipartite Graphs
5.2.1 Definition

A graph G is bipartite with bipartition {X,Y} if {X,Y} is a partition of V(G)
and all edges of G join vertices of X to vertices of Y.
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5.2.2 Lemma

A graph G is bipartite if and only if G contains no cycles of odd length.

Proof (a) Necessity Assume G is bipartite and let {X,Y} be a bipartition of
G. Suppose G contains a cycle C' = v1vs . .. V2,41 of odd length. Then without
loss of generality, v1 € X. This implies that vo € Y, v3 € X, and so on. Thus
vVam+1 € X. This is impossible since v1v2,,+1 would be an edge of G incident
to two vertices of X.

(b) Sufficiency Assume G contains no cycles of odd length. Let H be a com-
ponent of G, vy be a vertex of H, and T be a spanning tree of H rooted at
vo. Let X = {v € V(H) : distr(vo,v) iseven} and Y = {v € V(H)
distr(v1,v) is odd}. We will show that {X,Y} is a bipartition of H. Suppose
not. Without loss of generality there is an edge x1x2 in H with x122 € X. Let
Py be the path in T from vy to z1 and P> be the path in T' from vy to x5. Let
VoU1 - .. U, be the path which is common to both P; and Ps, Pj[v,,x1] be the
segment of P, from v, to z1, and Ps[z2,v,,] be the segment of P5 from x2 to
Um. Since P; and Pz both have even length, Pj[vy,, z1]z122Pa[z2, vm] is a cycle
in H of odd length. This is impossible. Hence {X,Y} is a bipartition of H.
Thus all components of G are bipartite. This implies that G is bipartite.

5.2.3 Theorem (D. Konig, 1931)

Let G be a bipartite graph. Then match(G) = cov(G).

Proof Let {X,Y} be a bipartition of G and let M be a maximum matching in
G. By Lemma 5.1.6, we have |M| = match(G) < cov(G). Thus it suffices to
show that G has a cover U with |U| = |M].

Let X be the set all M-unsaturated vertices in X and let W be the set of
all vertices of G which can be reached by M-alternating paths starting at Xo.
Let X =XNW, Yi=YNW, Xo=X-WandY; =YNW. Put U = X,UY;.
We will show that U is a cover of G with |U| = |M]|.

We first show that U is a cover of G. Suppose not. Let xy be an edge of G
which is not covered by U. Then z € X; and y € Y5. Since z € X; = X NW,
there is an M-alternating path P = zoy121y222 . . . Tmyme in G from a vertex
o € Xg to x. Since xg is M-unsaturated, xoy; & M. Since P is M-alternating,
we must have {y121, Y222, ..., ymx} C M. Now P’ = 2oy121Y222 . . . TmnYm Ty is
an M-alternating path from zg to y. This contradicts the fact that y € Yy =
Y -W.

We next show that every vertex in U is M-saturated. Since Xo = X — X; C
X — X and Xy is the set of all M-unsaturated vertices in X, all vertices in
Xy are M-saturated. If some vertex y € Y; was M-unsaturated then the M-
alternating path from a vertex zg € Xy to y would be M-augmenting. This
would contradict the fact that M is a maximum matching in G by Lemma
5.1.11. Thus all vertices in U = X5 UY; are M-saturated.

We next show that every edge in M is incident with a unique vertex of
U. Since U is a cover of G, every edge in M is incident with at least one
vertex of U. Suppose some edge zy € M is incident with two vertices of U.
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Then z € Xy and y € Y7. Since y € Y7 = Y N W, there is an M-alternating
path Q = zoy1T1Y222 ... Ym—1Zmy in G from a vertex xg € Xo to y. Since
xo is M-unsaturated, xoy; ¢ M. Since @ is M-alternating, we must have
{y171, Y222, . . ., Yym—1Tm} C M. Now Q' = oy121y2Z2 - . . Ym—1Zmyx is an M-
alternating path from zy to x. This contradicts the fact that x € Xo = X —W.

We have shown that all edges of M are incident with a unique vertex of U
and all vertices of U are incident with a unique edge of M. Thus |U| = |M| and
match(G) = cov(Q).

The above proof of Konig’s theorem gives rise to an algorithm for finding
a maximum matching and a minimum cover in a bipartite graph G. We start
with a given matching, and then iteratively increase the size of the matching
using augmenting paths. When we find a matching M for which their are no
augmenting paths we construct a cover U of G with |U| = | M| as described in
the above proof. We search for augmenting paths using the following concept.

5.2.4 Definition

Let G be a bipartite graph with bipartition {X,Y}. Let M be a matching in
G and X be the set of M-unsaturated vertices in X. An M -alternating forest
in G rooted at X is a forest F' such that Xo C V(F'), each component of F
contains a unique vertex of Xy, and each path in F' is M-alternating. We say
that F' is mazimal if it is not contained in a larger M-alternating forest rooted
at XQ.

5.2.5 Konig’s algorithm
We are given a bipartite graph G and a bipartition {X,Y} of G. We construct
a maximum matching M in G and a minimum cover U of G (with |[M| = |U|).

Initial Step We construct a matching M; in G by ‘greedily’ choosing edges
with no common end vertices until we cannot choose any more.

Iterative Step Suppose we have constructed a matching M; in G for some
i > 1. Let Xy be the set of M;-unsaturated vertices in X. Grow a maximal
M;-alternating forest rooted at X, for example by depth first search.

e If some component T of F contains an M;-unsaturated vertex other than
the root, then the unique path P in T from the root to this vertex is an
M;-augmenting path. Put M,1; = M; AE(P) and iterate.

e If every component of F' contains exactly one M;-unsaturated vertex then
STOP. Put M = M; and U = [X — V(F)]U[Y NV (F)] and output M
and U.

5.2.6 Example

Let G be the bipartite graph shown below.
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X1 ] €3 T4 T5

1 Y2 Y3 Ya Ys

Let My = {22y2, T3y3, T5Ys5 }-
First iteration Grow an M;-alternating forest Fj rooted at the M7-unsaturated
vertices x1, T4.

Y2 T2 Y1
L J
Y4
Z1 x5
@ 9
Y3 z3 Ys

Ty

The component of F; which contains x; contains another My-unsaturated
vertex y1. Let Py = x1ysxoy1 and put

My = MiAE(P) = {3322/1%12/2733393,33595}-

Second iteration Grow an Ms-alternating forest Fs rooted at the Ms-unsaturated

vertex x4. o T

T4
T

Y3 €3

No component of F5 contains an Ms-unsaturated vertex other than its root.
Thus Ms is a maximum matching in G. Put U = (V(F2) - X)U(V(F2)NX) =
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{z2,5,y2,y3}. Then U is a minimum cover of G. We have |[Ms| =4 = |U]|.

5.2.7 Lemma

The time taken for Konig’s algorithm to construct a maximal matching and a
minimum cover in a graph G is O(|V(G)| x |E(G)]).

Proof The time taken to grow an alternating forest in each iteration of the
algorithm is O(|F(G)]). (To see this we suppose that we grow the forest F
using breadth first search and that the vertices of F' are added in the or-
der ui,us,...,us. Then we first consider all edges incident to w;, then all
edges incident to uz, and so on. Thus the time taken is O(3_,cy (q) da(u)) =
O(2|E(GQ)]) = O(|E(G)]).) Since each iteration increases the size of the match-
ing, the number of iterations is at most ||V(G)|/2]. Hence the total running
time of the algorithm is O(|V(G)| x |E(G)]).

5.2.8 Remark

As noted in Remark 5.1.13, there is a polynomial algorithm due to Edmonds
(1965) which constructs a maximum matching in a graph which is not necessarily
bipartite. There is no known polynomial algorithm, however, for finding a
minimum cover in a graph which is not bipartite.

Matchings which saturate one side of the bipartition

Suppose G is a bipartite graph with bipartition {X,Y} where |X| <|Y|. Since
X is a cover of G, every matching in G has size at most | X|, and every matching
of size | X | will saturate every vertex of X. We can use Konig’s Therem to deduce
a simple characterization of when G has such a matching. We need the following
concept.

5.2.9 Definition

Let G be a graph and S C V(G). Then the neighbour set of S, T'z(S), is the
set of all vertices of G which are adjacent to at least one vertex of S.

5.2.10 Theorem (P. Hall, 1935)

Let G be a bipartite graph with bipartition {X,Y}. Then exactly one of the
following alternatives hold.
(a) G has a matching which saturates every vertex of X.
(b) There exists a set S C X such that |L¢(S)] < |S].
Proof Suppose G has a matching M which saturates X. Choose S C X. Since
each vertex of S is matched by an edge of M to a distinct vertex of Y, we must
have [I'¢(S)| > |S|. Hence (b) cannot occur.

Suppose G does not have a matching which saturates X. Then match(G) <
|X|. Since match(G) = cov(G) by Konig’s Theorem, we have cov(G) < |X].
Let U be a minimum cover of G and let S =X —U and T'=Y NU. Since U is
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a cover of G, there are no edges in G from S to Y —T. Thus I'¢(S) C T. We
have

| X|>cov(G)=U=UNX|+|UNY|=|X -S|+ |T|=|X|—|S|+]|T].

Thus |S| > |T| > [T'¢(S)|, and (b) holds.

5.2.11 Note

The above proof is constructive. If G does not have a matching which saturates
X, then we can find a set S C X with |T'¢(S)| < |S| by constructing a minimum
cover U of G and putting S =X —U.

5.2.12 Example

The graph G of Example 5.2.6 has match(G) = 4 < |X| and hence does not
have a matching which saturates X. We have sen that U = {2, z5,y2,y3} is
a minimum cover of G. Putting S = X — U = {z1,x3,24} we have ['¢(S) =
{y2,y3} and [T'¢(S)| =2 <3 =|9].
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