
4 Maximum flows in networks

Throughout this chapter we will consider a directed network N with two
distinguished vertices x and y. We denote the weight of an arc e of N by
c(e) and refer to it as the capacity of e. We assume that the capacity of each
arc of N is a non-negative integer. Given a vertex v of N , we denote the set
of arcs leaving v by A+

N
(v) and the set of arcs entering v by A−

N
(v).

4.1 Definition

Suppose f is a function which associates a non-negative integer with each arc
of N , so f : A(N) → N. For each vertex v of N let f+(v) =

∑

e∈A
+

N
(v) f(e)

and f−(v) =
∑

e∈A
−

N
(v) f(e). We say that f is an xy-flow in N if:

• 0 ≤ f(e) ≤ c(e) for all e ∈ A(N), and

• f+(v) = f−(v) for all v ∈ V (N) − {x, y}.

The value of the xy-flow f is given by

val(f) = f+(x) − f−(x).

Thus the value of the flow is the net flow out of x.

4.2 Example

The following network represents one way roads in a city centre. The capac-
ity of each arc is the maximum number of cars/second which can travel along
the corresponding road. Cars can only enter the network at junction x and
leave at junction y. The given xy-flow represents the number of cars/second
travelling along each road. The value of a flow is the rate at which cars are
passing through the network from x to y.

29

t

t

t

t

t

t�
�

��3

-
Q

Q
QQs

�
�

�
��3

-

�
�

�
�

�
�

�
�+Q

Q
QQs

6
?N =

x

(1)

(1)

(1)

(1)

(1)

(1)(1) 1

11

1

(2)2

2 2
3

3

4

(0) y

v1 v2

v3v4

The flow along an arc is given by the number in brackets and its ca-
pacity by the number not in brackets. We have val(f) = f +(x) − f−(x) =
(1 + 1) − 0 = 2.

We will consider the optimization problem of finding an xy-flow of max-
imum value in N .

4.3 Notation

For U a proper subset of V (N), let A+
N

(U) be the set of all arcs of N from
U to V (N) − U . We say that A+

N
(U) is an arc-cut of N . When x ∈ U and

y ∈ V (N) − U we say that A+
N

(U) is an xy-arc-cut of N . The capacity of
the arc-cut A+

N
(U) is defined to be

c+(U) =
∑

e∈A
+

N
(U)

c(e) and c−(U) =
∑

e∈A
−

N
(U)

c(e).

Similarly, given an xy-flow f for N we let

f+(U) =
∑

e∈A
+

N
(U)

f(e) and f−(U) =
∑

e∈A
−

N
(U)

f(e)

Thus f+(U) is the total flow from U to V (N) − U and f−(U) is the total
flow from V (N) − U to U .

4.4 Lemma

Let f be an xy-flow in N and U ⊂ V (N) with x ∈ U and y ∈ V (N) − U .
Then val(f) = f+(U) − f−(U).

30

Proof Since f is an xy-flow we have f+(v) = f−(v) for all v ∈ U − {x}.
Hence

val(f) = f+(x) − f−(x) =
∑

u∈U

f+(u) −
∑

u∈U

f−(u).

The sums on the right hand side of the above equality count f(e) on
each arc e incident with vertices of U . There are three alternatives for such
an arc e.

• e is incident with two vertices of U . Then f(e) is counted once in
∑

u∈U
f+(u) and once in

∑

u∈U
f−(u) so its contribution to

∑

u∈U
f+(u)−

∑

u∈U
f−(u) is zero.

• e ∈ A+
N

(U). Then f(e) is counted once in
∑

u∈U
f+(u) so its contri-

bution to
∑

u∈U
f+(u) −

∑

u∈U
f−(u) is f(e).

• e ∈ A−

N
(U). Then f(e) is counted once in

∑

u∈U
f−(u) so its contri-

bution to
∑

u∈U
f+(u) −

∑

u∈U
f−(u) is −f(e).

Thus

∑

u∈U

f+(u) −
∑

u∈U

f−(u) =
∑

e∈A
+

N
(U)

f(e) −
∑

e∈A
−

N
(U)

f(e) = f+(U) − f−(U).

Hence val(f) = f+(U) − f−(U).

4.5 Corollary

Let f be an xy-flow in N and U ⊂ V (N) with x ∈ U and y ∈ V (N) − U .
Then val(f) ≤ c+(U).
Proof This follows from Lemma 4.4 since f is a flow and hence f +(U) ≤
c+(U) and f−(U) ≥ 0.

4.6 Corollary

Let f be an xy-flow in B and U ⊂ V (N) be such that U separates x from y.
If val(f) = c+(U) then f is an xy-flow of maximum value in N and A+

N
(U)

is an xy-arc cut of minimum capacity in N .
Proof Follows immediately from Corollary 4.5.

31

4.7 Definition

Let f be an xy-flow in N . An f -unsaturated path in N is a path P (possibly
containing both forward and backward arcs) satisfying the following two
conditions.

• for each forward directed arc e of P we have f(e) < c(e), and

• for each backward directed arc e of P we have f(e) > 0.

Suppose P is an f -unsaturated xy-path P in N . For each arc e of P let:
s(e) = c(e)−f(e) if e is a forward arc of P , and s(e) = f(e) if e is a backward
arc of P . Put s(P) = min{s(e) ; e ∈ A(P)}.

Thus, in Example 4.2, the path P = xv4v2v3y is an f -unsaturated xy-
path and s(P) = min{2, 1, 3, 3} = 1.

4.8 Lemma

Suppose f is an xy-flow in N and P is an f -unsaturated xy-path P in N .
Then N has an xy-flow g with val(g) = val(f) + s(P).
Proof Define a function g : A(N) → N by

g(e) =







f(e) if e 6∈ A(P)
f(e) + s(P) if e is a forward arc of P

f(e) − s(P) if e is a backward arc of P

It is straightforward (but tedious) to check that g is an xy-flow in N and
val(g) = val(f) + s(P).

The Ford-Fulkerson Algorithm

Ford and Fulkerson gave an algorithm for constructing an xy-flow of max-
imum value in a directed network N in 1956. Their algorithm begins with
a given xy-flow f and searches for an f -unsaturated xy-path in N . It does
this by growing a maximal f -unsaturated directed tree T rooted at x i.e. a
maximal directed tree T with the property that all paths in T starting at x

are f -unsaturated. If T contains y then we may use the f -unsaturated xy-
path in T and Lemma 4.8 to construct a new flow g with val(g) > val(f).
We then iterate. If T does not contain y then we can use the tree T to
construct an xy-arc-cut A+

N
(U) with val(f) = c+(U). We may then use

Corollary 4.6 to deduce that f is a flow of maximum value. The algorithm
is more complicated to describe than previous algorithms (since it grows a

32

tree at every iteration) so we split it up into subroutines.

Subroutine: Maximal Unsaturated Tree We are given an xy-flow f in
N . We construct a maximal f -unsaturated directed tree T rooted at x.

Initial Step Let T1 be the directed tree with V (T1) = {x} and A(T1) = ∅.

Iterative Step Suppose we have constructed a tree Ti with for some i ≥ 1.

• If there exists an arc e = uv of N from Ti to N − Ti with f(e) <

c(e) then put Ti+1 = Ti + v + e.

• If there exists an arc e = vu of N from N −Ti to Ti with f(e) > 0
then put Ti+1 = Ti + v + e.

• If all arcs of N from Ti to N − Ti satisfy f(e) = c(e) and all arcs
of N from N − Ti to Ti satisfy f(e) = 0 then STOP. Put T = Ti

and output T .

Subroutine: Augment Flow We are given an xy-flow f in N and an
f -unsaturated xy-path P . We construct a new xy-flow g with val(g) =
val(f) + s(P) as in the proof of Lemma 4.8.

Main Algorithm We are given an xy-flow f1 in N . (If no xy-flow is
given then we take f1 to be the zero-flow by putting f1(e) = 0 for all
e ∈ A(N).) We iteratively construct a sequence of xy-flows f1, f2, . . . with
val(fi+1) > val(fi). The algorithm terminates when it finds an xy-flow
f and a proper subset U of V (N) such that x ∈ U , y ∈ V (N) − U and
val(f) = c+(U).

Iterative Step Suppose we have an xy-flow fi for some i ≥ 1. Grow a
maximal fi-unsaturated tree T rooted at x using Subroutine: Maximal
Unsaturated Tree.

• If y is a vertex of T then the path P from x to y in T is fi-
unsaturated. Construct a new xy-flow fi+1 with val(fi+1) =
val(fi) + s(P) using Subroutine: Augment Flow.

• If y is not a vertex of T then STOP. Put f = fi, and U = V (T),
and output f and U .

4.9 Example

We apply the algorithm to the flow f1 in the network N of Example 4.2 as
follows.
First Iteration

33

Step 1 Grow a maximal f1-unsaturated tree T from x.

s

s

s

s

s

s�
�

�3

Q
Q

Qs
�

�
��+ ?

�
�

�3

T0 =
x

v1

v4 v3

v2 y

Step 2 T contains y. Use the f1-unsaturated xy-path P = xv4v2v3y in T

to define a new flow f2 with val(f2) = val(f1) + s(P) = val(f1) + 1.

t

t

t

t

t

t�
�

��3

-
Q

Q
QQs

�
�

�
��3

-

�
�

�
�

�
�

�
�+Q

Q
QQs

6
?

x

(1)

(2)

(0)

(1)

(2)

(1)(1) 1

11

1

(2)2

2 2
3

3

4

(1) y

v1 v2

v3v4

Second Iteration

Step 1 Grow a maximal f2-unsaturated tree T from x.

s

s

s

�
�

�3

Q
Q

Qs

x

v1

v2

Step 2 T does not contain y. Let f = f2 and U = V (T) = {x, v1, v2}.

Note that we have val(f) = 3 = c+(U). Hence by Lemma 4.6, f is an
xy-flow of maximum value in N , and A+

N
(U) is an xy-arc-cut of minimum

capacity in N .

34

4.10 Theorem

Let N be a directed network and x, y be vertices of N . Let f be an xy-
flow and U ⊂ V (N) constructed by the Ford-Fulkerson algorithm. Then
val(f) = c+(U). Hence f is an xy-flow of maximum value in N , and A+

N
(U)

is an xy-arc-cut of minimum capacity in N .

Proof We have U = V (T), where T is the maximal f -unsaturated tree
rooted at x constructed in the last iteration of the Ford-Fulkerson algorithm
and y ∈ V (N) − V (T). Since T was constructed by Subroutine: Maximal
Unsaturated Tree, we have f(e) = c(e) for all arcs from U to V (N)−U , and
f(e) = 0 for all arcs from V (N) − U to U . Using Lemma 4.4, we now have

val(f) = f+(U)−f−(U) =
∑

e∈A
+

N
(U)

f(e)−
∑

e∈A
−

N
(U)

f(e) =
∑

e∈A
+

N
(U)

c(e)−0 = c+(U).

Corollary 4.6 now implies that f is an xy-flow of maximum value and
that A+

N
(U) is an xy-arc cut of minimum capacity.

4.11 Corollary (The Max-flow Min-cut Theorem)

The maximum value of an xy-flow in N is equal to the minimum capacity
of an xy-arc cut in N .
Proof Follows immediately from Theorem 4.10.

4.12 Complexity of network algorithms

Suppose we have an algorithm which will solve a particular problem for any
given network N , for example finding a minimum weight spanning tree in
N . We would expect the time that the algorithm takes to solve the problem
to be dependent on the numbers of vertices and edges in N . However we
would also expect the time taken to depend on the weights of the edges,
since we could make the algorithm run longer by increasing the size of the
edge weights, so that in particular just reading the edge weights could take
an arbitrarily long time. There are two ways we can take account of this:

• We say that the algorithm is polynomial if its running time on a net-
work N is a polynomial function of |V (N)|, |E(N)| and log2 k, where
k = max{|w(e)| : e ∈ E(N)}. (We use log2 k rather than k itself
since it takes only log2 k binary bits to input k into a computer.)

35

• We say that the algorithm is strongly polynomial if its running time
on a network N is a polynomial function of |V (N)| and |E(N)|), as-
suming that all elementary arithmetic operations (such as reading a
number, comparing two numbers and choosing the largest, or adding
or multiplying two numbers) take constant time, no matter how large

the numbers involved are.

Since elementary arithmetic operations on numbers of size at most k can
be performed in O(log2k) time, all strongly polynomial network algorithms
are polynomial. Our remarks in Chapter 3 imply that the network algo-
rithms of Prim, Kruskal, Dijkstra, and Moravék are all strongly polynomial.

4.13 Lemma

The implementation of the Ford-Fulkerson algorithm given above is neither
polynomial nor strongly polynomial.
Proof Consider the following network N .

u

u

u

u

x y

v1

v2

k k

k
k

1

(0)

(0)

(0)
(0)

(0)

The capacities of the arcs xv1, v1y, xv2, v2y are all equal to k where k is a
large positive integer. Suppose we run the Ford-Fulkerson algorithm on N .
We start with the ‘zero flow’ f1, by putting f1(e) = 0 for all e ∈ A(N).
The first iteration of the algorithm could find the f1-unsaturated xy-path
P1 = xv1v2y. The maximum amount of flow we can send along this path
is s(P1) = 1. This gives rise to the new xy-flow f2 shown below which has
value 1.

36

u

u

u

u

x y

v1

v2

k k

k
k

1

(1)

(0)

(1)
(0)

(1)

The second iteration of the algorithm could find the f2-unsaturated xy-path
P2 = xv2v1y. The maximum amount of flow we can send along this path
is s(P2) = 1. This gives rise to the new xy-flow f3 shown below which has
value 2.

u

u

u

u

x y

v1

v2

k k

k
k

1

(1)

(1)

(1)
(1)

(0)

The third iteration of the algorithm could find the f3-unsaturated xy-path
P3 = xv1v2y and produce an xy-flow f4 of value 3. We could continue in
this way for 2k + 1 iterations before we find the xy-flow of maximum value
shown below.

37

u

u

u

u

x y

v1

v2

k k

k
k

1

(k)

(k)

(k)
(k)

(0)

Since k can be arbitrarily large, the running time is not bounded above by
any (polynomial) function of |V (N)| and |E(N)|, even if we assume that all
elementary arithmetic operations take constant time. Hence the algorithm is
not strongly polynomial. It is not polynomial since 2k+1 is not a polynomial
function of |V (N)|, |E(N)| and log2 k.

4.14 Note

Dinits (1970), and Edmonds and Karp (1972) suggested a refinement of
the Ford-Fulkerson algorithm which makes it strongly polynomial. They
showed that if the Subroutine: Maximum Unsaturated Tree is implemented
in such a way that it grows a breadth first search unsaturated tree, then
the running time of the algorithm is O(|V (N)|2 × |A(N)|) (assuming all
elementary arithmetic operations take constant time).

38

