
3 Applications of Trees

Growing a tree in a graph is the most efficient way of searching through
the vertices of the graph. Most graph algorithms involve some kind of tree-
growing procedure. We will consider several such algorithms in this chapter,
and also in subsequent chapters. We first describe a way of measuring how
efficient an algorithm is.

3.1 Complexity of graph algorithms

Suppose we have an algorithm which will solve a particular problem for any
given graph G, for example determining whether G is connected or not.
We would expect the time that the algorithm takes to solve the problem
to be a function of the size of G, that is to say a function of the numbers
of vertices and edges in G. We say the algorithm has complexity of order

f(|V (G)|, |E(G)|) for some function f : R×R → R if the time taken by the
algorithm to solve the problem for any graph G is at most a constant times
f(|V (G)|, |E(G)|). Equivalently we may use ‘big O’ notation and say that
the algorithm has complexity O(f(|V (G)|, |E(G)|)). The fastest algorithms
have complexity bounded by a linear function of the numbers of vertices
and edges in G i.e. have complexity O(|V (G)| + |E(G)|). We say that any
algorithm whose complexity is bounded by a polynomial function of |V (G)|
and |E(G)| to be a polynomial or (efficient) algorithm. Algorithms which
can run for a time which is an exponential function of |V (G)| or |E(G)| are
not efficient.

3.2 Finding the connected component of a graph containing
a given vertex

Suppose we are given a graph G and a vertex v of G. We find the connected
component containing v by growing a maximal tree T starting at v. We refer
to v as the root vertex of the tree. We use the following iterative procedure.
In the i’th step of the iteration we construct a tree Ti with vertices labelled
x1, x2, . . . , xi.

Basic Tree Growing Algorithm

Initial Step Put x1 := v1 and let T1 be the tree with V (T1) = {x1} and
E(T1) = ∅.

13

Iterative Step Suppose we have constructed a tree Ti with V (Ti) = {x1, x2, . . . , xi}
for some i ≥ 1.

• If some edge e of G is incident with a vertex xj of Ti and a vertex
y of G − Ti then put xi+1 = y and Ti+1 := Ti + xi+1 + e.

• If no edge G is incident with both a vertex of Ti and a vertex of
G − Ti then STOP. Put T = Ti and output T .

The final tree T will contain all vertices which belong to the same con-
nected component H as v. To construct H we add to T all edges of G whose
end vertices both belong to T .

The iterative step in the basic tree growing algorithm can be made more
precise by choosing the vertex xj of Ti such that:

• j is as small as possible - this is called breadth first search.

• j is as large as possible - this is called depth first search.

It is easy to see that the above algorithm is efficient. In each iteration
we check at most all the edges of G incident with the vertices of Ti to
see if there is an edge from Ti to G − Ti, and hence we check at most
|E(G)| edges. Since each iteration increases the number of vertices of Ti,
the number of iterations is at most |V (G)|. Thus the complexity of the
algorithm is O(|V (G)|× |E(G)|). In fact, it is straightforward to implement
the algorithm in such a way that it has complexity O(|V (G)|+ |E(G)|) since
there is no need to check any edge more than once.

3.3 Finding the connected components of a graph

We know by Lemma 1.10 that the connected components of a graph G have
no vertices in common. So we can find the connected components of G by
first choosing a vertex v1 ∈ V (G) and using the algorithm of Section 3.2 to
find the connected component H1 of G which contains v1. If H1 = G then
G is connected. If H1 6= G then we choose v2 ∈ V (G) − V (H1) and use the
algorithm of Section 3.2 to find the connected component H2 of G which
contains v2. We continue until all vertices of G belong to some connected
component.

3.4 Finding the strongly connected components of a digraph

Let D be a digraph. Choose v1 ∈ V (D). We find all vertices which can
be reached along directed paths starting at v1 by grow a maximal tree T +

14

rooted at v1 such that all arcs of T +

1
are directed away from v1. To do this

we modify the recursive step in the basic tree growing algorithm by choosing
a vertex xj of T such that there is an arc in D from xj to some vertex v in
V (D) − V (T). We then find all vertices which can reach v1 along directed
paths by growing a maximal tree T− rooted at v1 such that all arcs of T−

1

are directed towards v1. To do this we modify the recursive step in the
basic tree growing algorithm by choosing a vertex xj of T such that there
is an arc in D from some vertex v in V (D) − V (T) to xj. Then the vertex
set of the strongly connected component H1 of D containing v1 is given by
V1 := V (T +

1
)∩V (T−

1
). To construct H1 we add to V1 all arcs of D which join

vertices of V1. We can then find the next strongly connected component H2

by repeating the above procedure starting at a vertex v2 ∈ V (D) − V (H1),
and so on until all the vertices of D are contained in some strongly connected
component.

Example Applying the above algorithm to the digraph of Example 1.12,
we grow the following two trees from v1.

u

u

u

u

Q
Q

Q
QQs

�
�

�
��3

-

u-

v1
T+

1
= u u u��

v2

v3

v4

v5

v1 v5 v2
T−

1
=

This gives V (D1) = V (T +
1

)∩V (T−

1
) = {v1, v2, v5} and A(D1) = {v1v2, v2v5, v5v1}.

Thus

u u

D1 =

v1

v2v5

u

�
���

@
@@R

�

15

Iterating we obtain the two other strongly connected components of D.

3.5 Finding a minimum weight spanning tree in a connected
network

Recall that a network is a graph or digraph in which, to each edge e we
associate a real number w(e) called the weight of e. Given a network N and
a subnetwork H of N , we define the weight of H, w(H) to be the sum of
the weights of the edges of H.

The following two algorithms find a minimum weight spanning tree in
a connected network N . The first is a refinement of the basic tree growing
algorithm given in Section 3.2, it grows the tree in a connected way starting
from a root vertex. The second chooses edges of minimum weight in the
network greedily, but may not become connected until the final edge is
chosen.

Prim’s Algorithm

We are given a connected network N . We choose a vertex v1 of N . We grow
a tree rooted at v1 using the basic tree growing algorithm with the iterative
step modified so that it chooses an edge e from Ti to G− Ti with w(e) is as
small as possible.

Initial Step Put x1 := v1 and let T1 be the tree with V (T1) = {x1} and
E(T1) = ∅.

Iterative Step Suppose we have constructed a tree Ti with V (Ti) = {x1, x2, . . . , xi}
for some i ≥ 1.

• If V (Ti) 6= V (N) then choose an edge e of N which is incident
with a vertex xj of Ti and a vertex y of G − Ti and is such w(e)
is as small as possible. Put xi+1 = y and Ti+1 := Ti + xi+1 + e.

• If V (Ti) = V (N) then STOP. Put T = Ti and output T .

It can be shown that the above algorithm has complexity O(|V (N)| ×
|E(N)|) in exactly the same way as for the basic tree growing algorithm,
and hence is an efficient algorithm. The following implementation of the
algorithm, suggested by Prim in 1957, uses a labeling procedure so that
each edge of N need only be considered once. This reduces the complexity
to O(|V (N)|2 + |E(N)|).

It is easiest to describe the algorithm for simple networks i.e. networks
without loops or multiple edges. If N is not simple then we delete all loops

16

in N and replace each multiple edge by a single edge with weight equal to the
smallest weight in the multiple edge. This preliminary step will not change
the weight of a minimum weight spanning tree of N and can be performed
in time O(|E(N)|). Henceforth we assume N is simple. This means we can
uniquely represent each edge by its pair of end vertices. We write uv to
mean the edge of N with end vertices u and v and use w(uv) to denote the
weight of this edge.

In the i’th step of the iteration, we have a tree Ti with V (Ti) = {x1, x2, . . . , xi}
and each vertex y ∈ V (N)−V (Ti) is labeled with an ordered pair labeli(y) =
[x, ki(y)] where x ∈ V (Ti), yx is an edge of minimum weight from y to
Ti, and ki(y) = w(yx). (If there is no edge from y to Ti then we have
labeli(y) = [x1,∞].)

Initial Step Choose v ∈ V (N). Put x1 = v and let T1 be the tree with
V (T1) = {x1} and E(T1) = ∅. For y ∈ V (N) − V (T1) put

label1(y) =

{

[x1, w(x1y)] if y is adjacent to x1,
[x1,∞] otherwise.

Iterative Step Suppose we have constructed a tree Ti with V (Ti) = {x1, x2, . . . , xi}
for some i ≥ 1 and have labeled all vertices y ∈ V (N) − V (Ti) with a
label labeli(y) = [x, ki(y)].

• If V (Ti) 6= V (N) then choose a vertex ŷ ∈ V (N) − V (Ti) such
that labeli(ŷ) = [x̂, ki(ŷ)] and ki(ŷ) is as small as possible. Put
xi+1 = ŷ and Ti+1 := Ti + xi+1 + x̂xi+1. For each vertex y ∈
V (N) − V (Ti+1) put

labeli+1(y) =

{

[xi+1, w(xi+1y)] if y is adjacent to xi+1 and w(yxi+1) < ki(y),
labeli(y) otherwise.

• If V (Ti) = V (N) then STOP. Put T = Ti and output T .

3.5.1 Lemma

The time taken for Prim’s algorithm to construct a spanning tree of a net-
work N is O(|V (N)|2 + |E(N)|).

Proof The time taken to remove any loops from N and replace multiple
edges by single edges is O(|E(N)|). We then run Prim’s algorithm on the
resulting simple network. In the i’th iteration we first read all the vertex

17

labels, choose ŷ ∈ V (N) − V (Ti) with ki(ŷ) as small as possible, and then
add ŷ to Ti to form Ti+1. This requires O(|V (N)|) time since there are
O(|V (N)|) vertex labels. We next update the vertex labels for all vertices
in N − Ti+1 which are adjacent to ŷ. This again takes O(|V (N)|) time.
Hence each iteration requires O(|V (N)|) time. Since the algorithm runs for
exactly |V (N)| iterations, the whole iterative procedure takes O(|V (N)|2)
time. Thus the total running time is O(|V (N)|2 + |E(N)|).

Note The above proof assumes that we can perform elementary arithmetic
operations with numbers in constant time, no matter how large the numbers

are. (We assume this for example when we update the vertex labels or when
we choose a vertex with the smallest label.) We will make this assumption
for all network algorithms considered in this course. We delay a more gen-
eral discussion of the complexity of network algorithms until the end of the
Chapter 4.

We next prove that Prim’s algorithm does indeed produce a minimum weight
spanning tree for N . We use the following lemma.

3.5.2 Lemma

Let N be a network and Ti be a tree produced in the i’th iteration of Prim’s
algorithm applied to N . Then Ti is contained in a minimum weight spanning
tree of N .

Proof We use induction on i.
Base Case i = 1. Since T1 is a tree with one vertex and no edges, it is
contained in all (minimum weight) spanning trees of N .
Induction Hypothesis Suppose i ≥ 2 and that Ti−1 is contained in a
minimum weight spanning tree of N .
Inductive Step Let T be a minimum weight spanning tree of N containing
Ti−1. We have Ti = Ti−1+y+e for some edge e = xy of N where x ∈ V (Ti−1)
and y ∈ V (N) − V (Ti−1). If e ∈ E(T) then Ti is contained in T and we are
done. Thus we may suppose that e 6∈ E(T). Let P be a path in T from x

to y and put H = T + e. Then C = P + e is a cycle in H. Let f be the first
edge of P which does not belong to Ti−1 (as we walk along P from x to y).
Note that f must exist since otherwise we would have P ⊆ Ti−1 and hence
C = P + e ⊆ Ti, which is impossible since Ti is a tree. Let T ′ = H − f . (So
T ′ = T + e− f). Since f is contained in the cycle C of H, f is not a bridge
of H. Thus T ′ is connected. Since

|E(T ′)| = |E(T)| = |V (T)| − 1 = |V (N)| − 1 = |V (T ′)| − 1,

18

T ′ is also a spanning tree of N . Furthermore Ti ⊆ T ′. We complete the
proof by showing that T ′ is another minimum weight spanning tree of N .

s s s s s

s ss

s

s

s

s

s

s

s
T

e

Ti−1 in thick lines
x

y

C

f
→

s s s s s

s s

s

s

s

s

s

s

s

s
T ′

e

Ti in thick lines
x

y

In the i’th step of Prim’s algorithm, we chose the edge e as the edge of
smallest weight from Ti−1 to N − Ti−1. Since f is also an edge from Ti−1 to
N − Ti−1, we must have w(f) ≥ w(e). Thus w(T ′) = w(T) + w(e)−w(f) ≤
w(T). Since T is a minimum weight spanning tree of N , we must have
w(T ′) = w(T) and T ′ is another minimum weight spanning tree of N .

3.5.3 Corollary

Let N be a network and T ∗ be a spanning tree for N produced by applying
Prim’s algorithm to N . Then T ∗ is a minimum weight spanning tree of N .

Proof It follows from Lemma 3.5.2 that T ∗ is contained in a minimum
weight spanning tree T for N . Since both T ∗ and T are spanning trees of
N we must have T ∗ = T .

Kruskal’s Algorithm

Kruskal (1956) gave a different algorithm for constructing a minimum weight
spanning tree in a network. Instead of growing a tree rooted at a vertex it
grows a forest i.e. a graph in which each component is a tree.

Initial Step Let F1 be the spanning forest of N with V (F1) = V (N) and
E(F1) = ∅.

Recursive Step Suppose we have constructed a spanning forest Fi of N

for some i ≥ 1.

• If i < |V (N)| then choose an edge e ∈ E(N) − E(Fi) such that
Fi + e contains no cycles and, subject to this condition, w(e) is
as small as possible. Put Fi+1 = Fi + e.

19

• If i = |V (N)| then STOP. Put T = Fi and output T .

We may show that Kruskal’s algorithm is an efficient algorithm for con-
structing a minimum weight spanning tree of N in a similar way as we did
for Prim’s algorithm.

No efficient algorithm for finding a minimum weight strongly connected
spanning subnetwork of a directed network is known. All known algorithms
for doing this can take an exponential amount of time.

3.6 Finding shortest paths from a given vertex to
every vertex in a network

In this section we will consider an undirected network N in which all edges
have non-negative weights. We will describe an algorithm for finding shortest
paths in N from a given vertex to every vertex of N .

3.6.1 Example

The following network N represents an existing rail network between cities.
The weight of an edge represents the cost of a ticket to travel between the
two cities represented by the end-vertices of the edge. A salesman located
at x1 wants to find the cheapest routes from x1 to each city of N .

u u

uu

u

v1 v2

v3v4

v5

5

3

2

4

1 1

32

3.6.2 Definitions

Let P be path in a network N . The length of P , w(P), is the sum of the
weights of the edges of P . For v ∈ V (N) and S ⊆ V (N) the distance from v

to S, distN (v, S), is the minimum length of a path from v to a vertex of S.

20

Dijkstra’s Algorithm

Let N be a network with positive edge weights and v be a vertex of N .
Dijkstra (1959) gave an algorithm for constructing shortest paths from v to
every vertex of N . His algorithm grows a tree rooted at v in a similar way
to Prim’s algorithm. As for Prim’s algorithm, it is easiest to describe the
algorithm for simple networks. If N is not simple then we delete all loops
in N and replace each multiple edge by a single edge with weight equal to
the smallest weight in the multiple edge. This preliminary step will not
change the length of any shortest path in N and can be performed in time
O(|E(N)|). Henceforth we assume N is simple. This means we can uniquely
represent each edge by its pair of end vertices. We write uv to mean the
edge of N with end vertices u and v and use w(uv) to denote the weight of
this edge.

In the i’th step of the iteration, we have a tree Ti with V (Ti) = {x1, x2, . . . , xi}
with x1 = v. We grow the tree by choosing an edge xy ∈ E(N) from Ti to
N−Ti such that distTi

(v, x)+w(xy) is as small as possible, and then putting
Ti+1 = Ti + y + xy. As for Prim’s algorithm, we use a labelling procedure
to ensure that no edge of N is considered more than once. Each vertex
y ∈ V (N) − V (Ti) is labelled with an ordered pair labeli(y) = [x, hi(y)]
where hi(y) is the length of a shortest path from v to y which uses only

vertices of V (Ti) ∪ {y}, and x ∈ V (Ti) is the vertex which precedes y on
such a path. (If there is no path from v to y which uses only the vertices of
V (Ti) ∪ {y} then we have labeli(y) = [x1,∞].)

Initial Step Put x1 = v and let T1 be the tree with V (T1) = {x1} and
E(T1) = ∅. For y ∈ V (N) − V (T1) put

label1(y) =

{

[x1, w(x1y)] if y is adjacent to x1,
[x1,∞] otherwise.

Iterative Step Suppose we have constructed a tree Ti with V (Ti) = {x1, x2, . . . , xi}
for some i ≥ 1 and have labelled all vertices y ∈ V (N) − V (Ti) with a
label labeli(y) = [x, hi(y)].

• If V (Ti) 6= V (N) then choose a vertex ŷ ∈ V (N) − V (Ti) such
that labeli(ŷ) = [x̂, hi(ŷ)] and hi(ŷ) is as small as possible. Put
xi+1 = ŷ and Ti+1 := Ti + xi+1 + x̂xi+1. For each vertex y ∈

21

V (N) − V (Ti+1) put

labeli+1(y) =







[xi+1, hi(xi+1) + w(xi+1y)] if y is adjacent to xi+1 and
hi(xi+1) + w(xi+1y) < hi(y),

labeli(y) otherwise.

• If V (Ti) = V (N) then STOP. Put T = Ti and output T .

Our next lemma shows that the tree constructed by Dijkstra’s algorithm
contains shortest paths from v to every vertex of N . Recall that the length
of a shortest path in N from v to a set S of vertices of N is denoted by
distN (v, S).

3.6.3 Lemma

Let N be a network with positive weights on its edges and v be a vertex of
N . Let Ti be a tree rooted at v produced in the i’th iteration of Dijkstra’s
algorithm applied to N . Then distTi

(v, x) = distN (v, x) for each vertex x

of Ti, and hence the unique path in Ti from v to x in Ti is a shortest path
in N from v to x.

Proof We use induction on i.
Base Case i = 1. Since T1 is a tree with one vertex x1 = v and no edges,
we have distT1

(v, x1) = 0 = distN (v, x1).
Induction Hypothesis Suppose i ≥ 2 and that distTi−1

(v, x) = distN (v, x)
for each vertex x of Ti−1.
Inductive Step Let S = V (N) − V (Ti−1). We have Ti = Ti−1 + ŷ +
x̂ŷ where x̂ ∈ V (Ti−1, ŷ ∈ S, x̂ŷ ∈ E(N), and x̂, ŷ are chosen such
that distTi−1

(v, x̂) + w(x̂ŷ) is as small as possible. Since distTi
(v, x) =

distTi−1
(v, x) = distN (v, x) for all x ∈ V (Ti−1), it suffices to show that

distTi
(v, ŷ) = distN (v, ŷ). We have

distN (v, S) ≤ distN (v, ŷ) ≤ distTi−1
(v, x̂) + w(x̂ŷ), (1)

since there is a path in N from v to ŷ of length distTi−1
(v, x̂) + w(x̂ŷ). On

the other hand, if P = vu1u2 . . . ury is a shortest path in N from v to S,
then, since all edge weights are positive, we must have ur ∈ V (Ti−1) and
P ′vu1u2 . . . ur is a shortest path in N from v to ur. Thus

distN (v, S) = w(P) = w(P ′) + w(ury) = distN (v, ur) + w(ury)

= distTi−1
(v, ur) + w(ury),

(2)

22

again by the induction hypothesis. In the i’th step in Dijkstra’s algorithm
we chose the vertices x̂, ŷ so that distTi−1

(v, x̂) + w(x̂ŷ) was as small as
possible. Thus

distTi−1
(v, x̂) + w(x̂ŷ) ≤ distTi−1

(v, ur) + w(ury). (3)

Combining (1), (2) and (3), we obtain

distN (v, S) ≤ distN (v, ŷ) ≤ distTi−1
(v, x̂) + w(x̂ŷ) ≤ distTi−1

(v, ur) + w(ury)

= distN (v, S).

Hence equality must hold throughout, and in particular

distN (v, ŷ) = distTi−1
(v, x̂) + w(x̂ŷ) = distTi

(v, ŷ).

We say that a spanning tree in a network N which contains shortest
paths from a vertex v to all vertices in the network is a shortest path span-

ning tree of N rooted at v. We can show in a similar way as for Prim’s
algorithm that the time Dijkstra’s algorithm takes to construct a shortest
path spanning tree of N rooted at v is O(|V (N)|2 + |E(N)|).

Applying the algorithm to the network of Example 3.6.1, we obtain the
following shortest path spanning tree T5 rooted at v1.

u u

uu

u

x1 = v1 x3 = v2

x5 = v3x4 = v4

x2 = v5

1 1

32

The corresponding table of vertex labels is shown below.

v1 v2 v3 v4 v5

1’st Iteration x1 [x1, 5] [x1,∞] [x1, 4] [x1, 1]
2’nd Iteration x1 [x2, 2] [x2, 4] [x2, 3] x2

3’rd Iteration x1 x3 [x2, 4] [x2, 3] x2

4’th Iteration x1 x3 [x2, 4] x4 x2

5’th Iteration x1 x3 x5 x4 x2

23

Thus a shortest path in N from v1 to v2 is v1v5v2 and a shortest in N from
v1 to v4 is v1v5v4.

Dijkstra’s algorithm can easily be modified to find shortest directed paths
from a given vertex to every vertex in a directed network which has positive
weights on its arcs.

3.7 Finding longest paths (and shortest paths) from a given
vertex to every vertex in an acyclic directed network

No efficient algorithm for finding longest paths in networks is known. All
known algorithms for doing this can take an exponential amount of time.
We can, however, find longest paths efficiently in directed networks which
have no directed cycles.

3.7.1 Definitions

A digraph D is acyclic if it has no directed cycles. An acyclic vertex labelling

of D is a labelling of its vertices as x1, x2, . . . , xn such that for all arcs
e = xixj of N , we have i < j.

3.7.2 Example

The following digraph D is acyclic and x1 = v1, x2 = v2, x3 = v5, x4 = v4,
x5 = v3 is an acyclic vertex labelling of its vertices.

u u

uu

u

v1 v2

v3v4

v5

We shall show that a digraph is acyclic if and only if it has an acyclic
labelling. We need the following lemma.

3.7.3 Lemma

Let D be an acyclic digraph. Then D contains a vertex v with d−

D(v) = 0.

Proof

24

Let P = v0e1v1 . . . emvm be a directed path of maximum length in D. There
are no arcs in D from any vertex of V (D) − V (P) to v0 since otherwise we
could extend P . There are no arcs in D from any vertex of V (P) to v0 since
otherwise we would obtain a directed cycle in D. Thus d−

D(v0) = 0.

3.7.4 Lemma

Let D be a digraph. Then D is acyclic if and only if D has an acyclic vertex
labelling.

Proof

Sufficiency Suppose D has an acyclic vertex labelling x1, x2, . . . , xn. Draw
D with all its vertices on a horizontal line with x1 first, then x2, and so on.
Then every arc of D goes from left to right. Thus D can have no directed
cycles since every directed walk with at least one arc must move continuously
towards the right so cannot return to its first vertex.
Necessity Suppose D is acyclic. By Lemma 3.7.2, D has a vertex v with
d−D(v) = 0. Let x1 = v and let D1 = D − x1 be the digraph obtained by
deleting x1 and all arcs incident to x1 from D. Then D1 is acyclic so again
by Lemma 3.7.2, D1 has a vertex w with d−D1

(w) = 0. Let x2 = w and
let D2 = D1 − x2. Continuing in this way we eventually obtain an acyclic
vertex labelling x1, x2, x3, . . . , xn for D.

Note that the ‘Necessity part’ of the above proof is constructive and readily
gives rise to an efficient algorithm for finding an acyclic vertex labelling of
an acyclic digraph. We can use acyclic vertex labellings to find longest paths
in acyclic directed networks.

Morávek’s Algorithm

Let N be an acyclic directed network and x1, x2, . . . , xn be an acyclic ver-
tex labelling of N . Suppose that every vertex of N can be reached by a
directed path starting at x1. Morávek (1970) gave an algorithm for con-
structing longest paths from x1 to every vertex of N . His algorithm grows
an out arborescence rooted at x1. It is easiest to describe the algorithm for
acyclic directed networks without multiple arcs. If N contains multiple arcs
then we replace each multiple arc by a single arc with weight equal to the
largest weight in the multiple arc. This preliminary step will not change the
length of any longest path in N and can be performed in time O(|A(N)|).
Henceforth we assume N has no multiple arcs. This means we can uniquely
represent each arc by its ordered pair of end vertices. We write uv to mean

25

the arc of N with tail u and head v, and use w(uv) to denote the weight of
this arc.

In the i’th step of the iteration, we have an out-arborescence Ti rooted
at x1 with V (Ti) = {x1, x2, . . . , xi}. Thus the vertices of Ti are the first
i vertices in the acyclic labelling of N . We grow the out-arborescence by
choosing an arc xjxi+1 ∈ A(N) from Ti to xi+1 such that distTi

(x1, xj) +
w(xjxi+1) is as large as possible, and then putting Ti+1 = Ti+xi+1+xjxi+1.

Initial Step Put x1 = v and let T1 be the out-arborescence with V (T1) =
{x1} and E(T1) = ∅.

Iterative Step Suppose we have constructed an out-arborescence Ti rooted
at x1 with V (Ti) = {x1, x2, . . . , xi} for some i ≥ 1.

• If V (Ti) 6= V (N) then choose a vertex xj ∈ V (Ti) such that
xjxi+1 ∈ A(N) and distTi

(x1, xj) + w(xjxi+1) is as large as pos-
sible. Put Ti+1 = Ti + xi+1 + xjxi+1.

• If V (Ti) = V (N) then STOP. Put T = Ti and output T .

3.7.5 Example

Consider the following acyclic directed network.

u u

uu

u

v1 v2

v3v4

v5

5

3

2

4

1 1

32

Applying Moravék’s algorithm using the acyclic labelling from Example
3.7.2, we obtain the longest path out-arborescence rooted at v1 shown below.

26

j

j

j

j

j

x1 = v1 x2 = v2

x3 = v5

x4 = v4 x5 = v3

5
5

1

6

2

8
2

10

0

Our next lemma shows that the tree constructed by Morávek’s algorithm
contains longest directed paths from v to every vertex of N .

3.7.6 Lemma

Let N be an acyclic directed network and x1, x2, . . . , xn be an acyclic vertex
labelling of N . Suppose that every vertex of N can be reached by a directed
path starting at x1. Let Ti be an out-arborescence rooted at x1 produced
in the i’th iteration of Morávek’s algorithm applied to N . Then the unique
directed path in Ti from x1 to x in Ti is a longest directed path in N from
x1 to x, for all vertices x of Ti.

Proof Let longN (x1, xi) denote the length of a longest directed path in N

from x1 to xi, for all 1 ≤ i ≤ n. We need to show that distTi
(x1, x) =

longN (x1, x) for all x ∈ V (Ti). We use induction on i.
Base Case i = 1. Since T1 is an out arborescence with one vertex x1 = v

and no edges, we have distT1
(v, x1) = 0 = longN (v, x1).

Induction Hypothesis Suppose i ≥ 2 and that distTi−1
(x1, x) = longN (x1, x)

for each vertex x of Ti−1.
Inductive Step We have Ti = Ti−1 + xi + xjxi where xj ∈ V (Ti−1),
xjxi ∈ A(N), and xj is chosen such that distTi−1

(v, xj) + w(xjxi) is as
large as possible. Since distTi

(x1, x) = distTi−1
(x1, x) = longN (x1, x) for all

x ∈ V (Ti−1), it suffices to show that distTi
(x1, xi) = longN (x1, xi). We have

longN (x1, xi) ≥ distTi−1
(x1xj) + w(xjxi), (4)

since there is a directed path in N from x1 to xi of length distTi−1
(x1, xj)+

w(xjxi). On the other hand, if P = x1u1u2 . . . urxi is a longest directed
path in N from x1 to xi, then, since urxi ∈ A(N) and x1, x2, . . . , xn is an
acyclic labelling of N , we must have ur = xk for some 1 ≤ k ≤ i − 1. Let

27

P ′ = x1u1u2 . . . ur. Then

longN (x1, xi) = w(P) = w(P ′) + w(xkxi) ≤ longN (x1, xk) + w(xkxi)

= distTi−1
(x1, xk) + w(xkxi),

(5)

by the induction hypothesis, since xk ∈ V (Ti−1). In the i’th step in Morávek’s
algorithm we chose the vertex xj so that distTi−1

(x1, xj) + w(xjxi) was as
large as possible. Thus

distTi−1
(x1, xj) + w(xjxi) ≥ distTi−1

(x1, xk) + w(xkxi). (6)

Combining (4), (5) and (6), we obtain

longN (x1, xi) ≥ distTi−1
(x1xj) + w(xjxi) ≥ distTi−1

(x1, xk) + w(xkxi)

≥ longN (x1, xi).

Hence equality must hold throughout, and in particular

longN (x1, xi) = distTi−1
(x1xj) + w(xjxi) = distTi

(x1xi).

In the i’th iteration of Morávek’s algorithm, we consider each arc entering
xi and choose the arc xjxi entering xi for which distTi−1

(x1xj) + w(xjxi) is
as large as possible. Thus the time taken by the i’th iteration is O(d−

N (xi)).
Hence the time taken for the algorithm to construct a spanning out ar-
borescence is O(

∑n
i=1

d−N (xi)) = O(|A(N)|). We also have to consider the
time taken to construct the acyclic labelling of N . It can be shown that
this is also O(|A(N)|), and hence the total running time of the algorithm
is O(|A(N)|). It is straightforward to adapt the algorithm to find shortest

directed paths from x1 to every vertex of N . The total running time will
again be O(|A(N)|).

28

