MAS210 Graph Theory Exercises 8 Solutions

Q1 Let K5 5 be the complete bipartite graph with bipartition X = {x1,x2,x3, 24,25}
andY = {y1,y2,y3,Y4,ys}. Let N be the network obtained from K55 by giv-
ing its edges the weights shown in the following table.

Y Y2 Y3 Ys4 Ys
1 5 1 2 3 3
o 4 3 4 4 3
3 3 2 5 6 2
gy 1 2 3 2 1
zs 1 2 1 2 1

Use the Hungarian method to construct a mazimum weight perfect matching
and a minimum size feasible vertex labelling for N. Justify the facts that
your perfect matching has mazimum weight and your feasible vertex labelling
has minimum size.

First iteration

We first construct the feasible vertex labelling ¢1 below.

Y Y2 Y3 Y+ Ys
rxr 5 1 2 3 3|5
ro 4 3 4 4 3|4
r3 3 2 5 6 2|6
g 1 2 3 2 113
rs 1 2 1 2 1|2
0 0 0 0 0|4

The equality subgraph G = G(¢;) for ¢; is shown below.

T x2 €3 T4 €5

®
1 Y2 Y3 Ya Ys

Apply Kénig’s Algorithm to G starting with the matching M1 = {x1y1, T2y3, 3y4, T5Yy2},



which we choose greedily. We obtain the following M;-alternating forest F
rooted at the Mj-unsaturated vertex x4.

Ya x3

Y1 x1

We deduce that M; is a maximum matching. Let S = X N V(F) =
{zy4, 29, 23,21}. Then I'q(S) =Y NV(F) = {ys,y4,y1}. This gives a =1
and we construct a new feasible vertex labelling /5 for G as below.

Y Y2 Y3 Y+ Ys
rxw H 1 2 3 3|54
2 4 3 4 4 3143
r3 3 2 5 6 2|65
g 1 2 3 2 1|3]|2
rs 1 2 1 2 11]2]2

0 0 0 0 014

1 0 1 1 O 4o

Second iteration

We construct the equality subgraph G = G(¢3) as below.

T T2 T3 X4 Is

1 Y2 Y3 Ya Ys

We apply Konig’s Algorithm to G starting with the matching M, from itera-
tion 1 and construct the perfect matching M = {z1y1, x2ys, T3Y4, T4Y3, T5y2 }.
We have w(M) = 19 = size(¢3). Thus M is a maximum weight perfect
matching in N, and /5 is a minimum size feasible vertex labelling for N.



Q2 Let b1, 40, ... be a sequence of vertex labellings constructed when the Hun-
garian method is applied to a network N. Prove that the following statements
are valid.

(a) Each of the vertex labellings £;, 1 > 1 are feasible.

(b) size(lir1) < size(l;) for all i > 1.

(a) We use induction on i. The fact that ¢ is feasible follows immediately
from the definition of ¢;. Assume, inductively, that ¢; is feasible for some
i > 1. Suppose that £;11 is not a feasible vertex labelling of N. Then we
have ¢;11(x) + 4it1(y) < w(zy) for some z € X and y € Y. Since ¢; is a
feasible vertex labelling of N, we must have x € S and y € Y —T'¢(S). But
then the definition of o implies that ¢;(x) + ¢;(y) — w(xy) > « and hence
liv1(x) +4it1(y) —w(zy) > 0. Thus ¢;1, is a feasible vertex labelling of N.
(b) Since a > 0 and |S| > |T'¢(S)|, we have size(l;41) = size(¢;) — (| S| —
ITa(S)]) < size(l;).

Q3(a) Determine the number of different perfect matchings in K, m.

(b) Deduce that, if N is the network obtained from K, ,, by giving its edges
integer weights, then the ‘brute force’ algorithm of enumerating all perfect
matchings and choosing one with the largest weight is not a polynomial al-
gorithm.

(a) Let M = {x1vi,, %2¥iy, - - - » TmYi,, } be a perfect matching in K, ,. We
have m different choices for the vertex y;,. Once we have chosen y;,, we have
m—1 different choices for the vertex y;,. Once we have chosen y;, and y;,, we
have m — 2 different choices for the vertex y;,, and so on. It follows that the
number of perfect matchings in Ky, is mx (m—1) x (m—2)...x2=ml.
(b) The time taken to enumerate all perfect matchings in N and choose
one with the largest weight will be at least ¢ x m!, where ¢ is a constant
representing the time it takes to calculate the weight of any given perfect
matching. Since ¢ x m! > m* for any fixed k, when m is large enough, the
brute force algorithm is not a polynomial algorithm.



Q4 Construct a graph G which is not bipartite and still satisfies

match(G) = cov(G).

Consider the following graph G
U1 (%)

V4 V3

Then M = {vive,v3v4} in G and U = {v1,v3} is a cover for G. Since
|M| =2 = |U| we have match(G) = 2 = cov(G).



