
MAS210 Graph Theory Exercises 8 Solutions

Q1 Let K5,5 be the complete bipartite graph with bipartition X = {x1, x2, x3, x4, x5}
and Y = {y1, y2, y3, y4, y5}. Let N be the network obtained from K5,5 by giv-
ing its edges the weights shown in the following table.

y1 y2 y3 y4 y5

x1 5 1 2 3 3
x2 4 3 4 4 3
x3 3 2 5 6 2
x4 1 2 3 2 1
x5 1 2 1 2 1

Use the Hungarian method to construct a maximum weight perfect matching
and a minimum size feasible vertex labelling for N . Justify the facts that
your perfect matching has maximum weight and your feasible vertex labelling
has minimum size.

First iteration

We first construct the feasible vertex labelling `1 below.

y1 y2 y3 y4 y5

x1 5 1 2 3 3 5
x2 4 3 4 4 3 4
x3 3 2 5 6 2 6
x4 1 2 3 2 1 3
x5 1 2 1 2 1 2

0 0 0 0 0 `1

The equality subgraph G = G(`1) for `1 is shown below.

u u u u u

u u u u u
x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

Apply König’s Algorithm to G starting with the matching M1 = {x1y1, x2y3, x3y4, x5y2},
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which we choose greedily. We obtain the following M1-alternating forest F

rooted at the M1-unsaturated vertex x4.

u u u

u u

u u

x4 x2

x3

x1

y3

y4

y1

We deduce that M1 is a maximum matching. Let S = X ∩ V (F ) =
{x4, x2, x3, x1}. Then ΓG(S) = Y ∩ V (F ) = {y3, y4, y1}. This gives α = 1
and we construct a new feasible vertex labelling `2 for G as below.

y1 y2 y3 y4 y5

x1 5 1 2 3 3 5 4
x2 4 3 4 4 3 4 3
x3 3 2 5 6 2 6 5
x4 1 2 3 2 1 3 2
x5 1 2 1 2 1 2 2

0 0 0 0 0 `1

1 0 1 1 0 `2

Second iteration

We construct the equality subgraph G = G(`2) as below.

u u u u u

u u u u u
x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

We apply König’s Algorithm to G starting with the matching M1 from itera-
tion 1 and construct the perfect matching M = {x1y1, x2y5, x3y4, x4y3, x5y2}.
We have w(M) = 19 = size(`2). Thus M is a maximum weight perfect
matching in N , and `2 is a minimum size feasible vertex labelling for N .
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Q2 Let `1, `2, . . . be a sequence of vertex labellings constructed when the Hun-
garian method is applied to a network N . Prove that the following statements
are valid.
(a) Each of the vertex labellings `i, i ≥ 1 are feasible.

(b) size(`i+1) < size(`i) for all i ≥ 1.

(a) We use induction on i. The fact that `1 is feasible follows immediately
from the definition of `1. Assume, inductively, that `i is feasible for some
i ≥ 1. Suppose that `i+1 is not a feasible vertex labelling of N . Then we
have `i+1(x) + `i+1(y) < w(xy) for some x ∈ X and y ∈ Y . Since `i is a
feasible vertex labelling of N , we must have x ∈ S and y ∈ Y −ΓG(S). But
then the definition of α implies that `i(x) + `i(y) − w(xy) ≥ α and hence
`i+1(x) + `i+1(y)−w(xy) ≥ 0. Thus `i+1 is a feasible vertex labelling of N .

(b) Since α > 0 and |S| > |ΓG(S)|, we have size(`i+1) = size(`i) − α(|S| −
|ΓG(S)|) < size(`i).

Q3(a) Determine the number of different perfect matchings in Km,m.
(b) Deduce that, if N is the network obtained from Km,m by giving its edges
integer weights, then the ‘brute force’ algorithm of enumerating all perfect
matchings and choosing one with the largest weight is not a polynomial al-
gorithm.

(a) Let M = {x1yi1 , x2yi2 , . . . , xmyim} be a perfect matching in Km,m. We
have m different choices for the vertex yi1 . Once we have chosen yi1 , we have
m−1 different choices for the vertex yi2 . Once we have chosen yi1 and yi2 , we
have m− 2 different choices for the vertex yi3 , and so on. It follows that the
number of perfect matchings in Km,m is m× (m−1)× (m−2) . . .×2 = m! .
(b) The time taken to enumerate all perfect matchings in N and choose
one with the largest weight will be at least c × m! , where c is a constant
representing the time it takes to calculate the weight of any given perfect
matching. Since c × m! > mk for any fixed k, when m is large enough, the
brute force algorithm is not a polynomial algorithm.
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Q4 Construct a graph G which is not bipartite and still satisfies

match(G) = cov(G).

Consider the following graph G

u u

uu

v1 v2

v3v4

Then M = {v1v2, v3v4} in G and U = {v1, v3} is a cover for G. Since
|M | = 2 = |U | we have match(G) = 2 = cov(G).
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