MAS210 Graph Theory Exercises 8 Solutions Q1 Let $K_{5,5}$ be the complete bipartite graph with bipartition $X = \{x_1, x_2, x_3, x_4, x_5\}$ and $Y = \{y_1, y_2, y_3, y_4, y_5\}$. Let N be the network obtained from $K_{5,5}$ by giving its edges the weights shown in the following table. Use the Hungarian method to construct a maximum weight perfect matching and a minimum size feasible vertex labelling for N. Justify the facts that your perfect matching has maximum weight and your feasible vertex labelling has minimum size. ## First iteration We first construct the feasible vertex labelling ℓ_1 below. | | y_1 | y_2 | y_3 | y_4 | y_5 | | |-------|-------|-------|-------|-------|-------|----------| | x_1 | 5 | 1 | 2 | 3 | 3 | 5 | | x_2 | 4 | 3 | 4 | 4 | 3 | 4 | | x_3 | 3 | 2 | 5 | 6 | 2 | 6 | | x_4 | 1 | 2 | 3 | 2 | 1 | 3 | | x_5 | 1 | 2 | 1 | 2 | 1 | 2 | | | 0 | 0 | 0 | 0 | 0 | ℓ_1 | The equality subgraph $G=G(\ell_1)$ for ℓ_1 is shown below. Apply König's Algorithm to G starting with the matching $M_1 = \{x_1y_1, x_2y_3, x_3y_4, x_5y_2\},\$ which we choose greedily. We obtain the following M_1 -alternating forest F rooted at the M_1 -unsaturated vertex x_4 . We deduce that M_1 is a maximum matching. Let $S = X \cap V(F) = \{x_4, x_2, x_3, x_1\}$. Then $\Gamma_G(S) = Y \cap V(F) = \{y_3, y_4, y_1\}$. This gives $\alpha = 1$ and we construct a new feasible vertex labelling ℓ_2 for G as below. | | y_1 | y_2 | y_3 | y_4 | y_5 | | | |-------|-------|-------|-------|-------|-------|----------|----------| | x_1 | 5 | 1 | 2 | 3 | 3 | 5 | 4 | | x_2 | 4 | 3 | 4 | 4 | 3 | 4 | 3 | | x_3 | 3 | 2 | 5 | 6 | 2 | 6 | 5 | | x_4 | 1 | 2 | 3 | 2 | 1 | 3 | 2 | | x_5 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | | | 0 | 0 | 0 | 0 | 0 | ℓ_1 | | | | 1 | 0 | 1 | 1 | 0 | | ℓ_2 | ## Second iteration We construct the equality subgraph $G = G(\ell_2)$ as below. We apply König's Algorithm to G starting with the matching M_1 from iteration 1 and construct the perfect matching $M = \{x_1y_1, x_2y_5, x_3y_4, x_4y_3, x_5y_2\}$. We have $w(M) = 19 = size(\ell_2)$. Thus M is a maximum weight perfect matching in N, and ℓ_2 is a minimum size feasible vertex labelling for N. - Q2 Let ℓ_1, ℓ_2, \ldots be a sequence of vertex labellings constructed when the Hungarian method is applied to a network N. Prove that the following statements are valid. - (a) Each of the vertex labellings ℓ_i , $i \geq 1$ are feasible. - (b) $size(\ell_{i+1}) < size(\ell_i)$ for all $i \ge 1$. - (a) We use induction on i. The fact that ℓ_1 is feasible follows immediately from the definition of ℓ_1 . Assume, inductively, that ℓ_i is feasible for some $i \geq 1$. Suppose that ℓ_{i+1} is not a feasible vertex labelling of N. Then we have $\ell_{i+1}(x) + \ell_{i+1}(y) < w(xy)$ for some $x \in X$ and $y \in Y$. Since ℓ_i is a feasible vertex labelling of N, we must have $x \in S$ and $y \in Y \Gamma_G(S)$. But then the definition of α implies that $\ell_i(x) + \ell_i(y) w(xy) \geq \alpha$ and hence $\ell_{i+1}(x) + \ell_{i+1}(y) w(xy) \geq 0$. Thus ℓ_{i+1} is a feasible vertex labelling of N. (b) Since $\alpha > 0$ and $|S| > |\Gamma_G(S)|$, we have $size(\ell_{i+1}) = size(\ell_i) \alpha(|S| |\Gamma_G(S)|) < size(\ell_i)$. - Q3(a) Determine the number of different perfect matchings in $K_{m,m}$. - (b) Deduce that, if N is the network obtained from $K_{m,m}$ by giving its edges integer weights, then the 'brute force' algorithm of enumerating all perfect matchings and choosing one with the largest weight is not a polynomial algorithm. - (a) Let $M = \{x_1y_{i_1}, x_2y_{i_2}, \ldots, x_my_{i_m}\}$ be a perfect matching in $K_{m,m}$. We have m different choices for the vertex y_{i_1} . Once we have chosen y_{i_1} , we have m-1 different choices for the vertex y_{i_2} . Once we have chosen y_{i_1} and y_{i_2} , we have m-2 different choices for the vertex y_{i_3} , and so on. It follows that the number of perfect matchings in $K_{m,m}$ is $m \times (m-1) \times (m-2) \ldots \times 2 = m!$. (b) The time taken to enumerate all perfect matchings in N and choose one with the largest weight will be at least $c \times m!$, where c is a constant representing the time it takes to calculate the weight of any given perfect matching. Since $c \times m! > m^k$ for any fixed k, when m is large enough, the brute force algorithm is not a polynomial algorithm. Q4 Construct a graph G which is not bipartite and still satisfies $$match(G) = cov(G).$$ Consider the following graph G Then $M=\{v_1v_2,v_3v_4\}$ in G and $U=\{v_1,v_3\}$ is a cover for G. Since |M|=2=|U| we have match(G)=2=cov(G).