
MAS210 Graph Theory Exercises 7 Solutions

Q1 Determine whether each of the following graphs G1 and G2 are bipartite.
Justify your answers.
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G1 is bipartite since X = {v1, v3, v5, v7, v7, v11, v13} and Y = {v2, v4, v6, v8, v10, v12, v14}
is a bipartition of G. (It is easy to check that every edge of G has one end
in X and one end in Y .
G2 is not bipartite since it contains the cycle C = v1v2v3v4v14v1 which has
odd length. (Or give a proof along the lines that if G has bipartition {X,Y }
then we may assume v1 ∈ X. This implies that: v2, v6, v14 ∈ Y ; v3, v11 ∈ X;
v4, v8 ∈ Y . Thus v4v14 is an edge joining two vertices of Y . Contradiction.)
Q2 (a) Prove that if a graph G contains a cycle of odd length then G is not
bipartite.

(b) Suppose G is a connected graph which contains no cycles of odd length.
Choose v0 ∈ V (G) and let T be a spanning tree of G rooted at v0. Let
X = {v ∈ V (G) : distT (v0, v) is even} and Y = {v ∈ V (G) : distT (v0, v) is odd}.
Prove that G is bipartite with bipartition {X,Y }.

(c) Deduce that a graph is bipartite if and only if it contains no cycles of
odd length.

(a) Let C = v1v2 . . . v2tv2t+1v1 be a cycle of odd length in G. Suppose G

has bipartition {X,Y }. Then we may assume v1 ∈ X. This implies that:
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v2 ∈ Y ; v3 ∈ X; v4 ∈ Y and so on. Thus {v1, v3, v5, . . . , v2t+1} ⊆ X and
{v2, v4, v6, . . . , v2t} ⊆ Y . But then v1v2t+1 is an edge joining two vertices of
X. Contradiction.

(b) Suppose that {X,Y } is not a bipartition of G. Without loss of generality
there is an edge x1x2 in G with x1x2 ∈ X. Note that x1x2 6∈ E(T ) since, if
it were, then we would have distT (v0, x1) = distT (v0, x2) ± 1, which would
contradict the fact that distT (v0, x1) and distT (v0, x2) are both even. Let
P1 be the path in T from v0 to x1 and P2 be the path in T from v0 to x2. Let
v0v1 . . . vm be the path which is common to both P1 and P2, P1[vm, x1] be
the segment of P1 from vm to x1, and P2[x2, vm] be the segment of P2 from
x2 to vm. Since P1 and P2 both have even length, P1[vm, x1]x1x2P2[x2, vm]
is a cycle in H of odd length. This is impossible. Hence {X,Y } is a bipar-
tition of G.

(c) Suppose G is bipartite. Then G has no cycles of odd length by (a).
Suppose G has no cycles of odd length. Then each connected component of
G is bipartite by (b). Thus G is bipartite.

Q3 Use König’s algorithm to construct a maximum matching and a min-
imum cover in the following bipartite graph, starting with the matching
M1 = {x1y1, x2y5, x3y7, x4y2}.

x x x x x x

x x x x xx

x x

x1 x2 x3 x4 x5 x6

y6 y7 y8y1 y2 y3 y4 y5

Justify the facts that your matching is maximum and your cover is minimum.
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First Iteration Grow a maximal M1-alternating forest F1 rooted at the
M1-unsaturated vertices x5, x6.
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The forest contains the M1-augmenting path P1 = x5y1x1y8.
Let M2 = M1 4 E(P ) = {x5y1, x1y8, x2y5, x3y7, x4y2}.

Second Iteration Grow a maximal M2-alternating forest F2 rooted at the
M2-unsaturated vertex x6.
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The tree does not contain any other M2-unsaturated vertices so M2 is a
maximum matching in G. Hence M2 is a maximum matching in G. Let
U = (X −V (F2))∪ (Y ∩V (F2)) = {x1, x4, y1, y5, y7}. Then U is a minimum
cover of G.
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Justification. We know that, for all matchings M of G, we have |M | ≤ |U | =
5. Since |M2| = 5, M2 is a maximum matching in G. Similarly, for all covers
U ′ of G, we have |U ′| ≥ |M2| = 5. Since |U | = 5, U is a minimum cover of
G.
Q4 Use König’s theorem to construct a connected bipartite graph G with
bipartition {X,Y } such that |X| = 6 = |Y |, match(G) = 4, and dG(v) ≥ 2
for all v ∈ V (G). Justify the fact that your graph G has match(G) = 4.

Let X = {x1, x2, . . . , x6} and Y = {y1, y2, . . . , y6} be the bipartition of G.
Let M be a maximum matching in G and U be a minimum cover of G.
Then |M | = 4 = |U |. Let X1 = X − U , X2 = X ∩ U , Y1 = Y ∩ U and
Y2 = Y − U . Since U is a cover, there are no edges of G from X1 to Y2.
Thus all edges incident to X1 join X1 to Y1. Since dG(x) ≥ 2 for all x ∈ X1,
we have |Y1| ≥ 2. Similarly |X2| ≥ 2. Since U = X2 ∪ Y1 and |U | = 4 we
must have |X2| = 2 = |Y1|. Without loss of generality, let X2 = {x5, x6}
and Y1 = {y1, y2}. Then X1 = {x1, x2, x3, x4} and Y2 = {y3, y4, y5, y6}. Let
G be obtained by adding all edges from X1 to Y1 and all edges from X2 to
Y2. We must also add at least one edge from X2 to Y1 to ensure that G is
connected. This gives us, for example, the following graph G.
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Let M = {x1y1, x2y2, x5y5, x6y6} and U = {x5, x6, y1, y2}. Then M is a
matching in G, U is a cover in G and |M | = 4 = |U |. Hence M is a
maximum matching and U is a minimum cover.
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