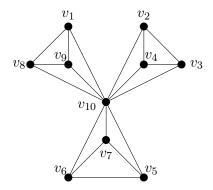
MAS210 Graph Theory Exercises 5

Hand in to BLUE BOX on the GROUND FLOOR of math sci building before 4:30pm on Friday 23/2/07.

Q1 Consider the following graph G.



Find a maximum matching in G and a minimum cover of G. Justify the facts that your matching is maximum and your cover is minimum.

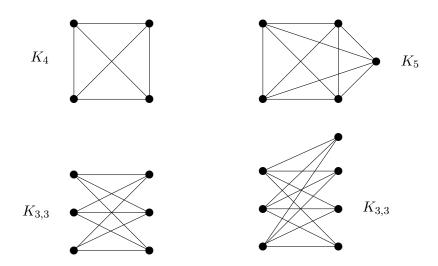
Maximum matching: $M_1 = \{v_1v_8, v_2v_3, v_5v_6, v_9v_{10}\}$. (Solution not unique.) Justification. Consider the graph $G - v_{10}$ obtained by deleting the vertex v_{10} and all incident edges from G. Then $G - v_{10}$ has three components each of which is a triangle. Thus, if M is any matching in G, then M can contain at most 3 edges which are not incident to v_{10} . Since M can have at most one edge which is incident to v_{10} , we have $|M| \leq 4 = |M_1|$. Thus M is a maximum matching in G. (Solution not unique.)

Minimum cover: $U_1 = \{v_1, v_8, v_2, v_3, v_5, v_6, v_{10}\}$. (Solution not unique.) Justification. Let U be any cover of G. We need at least two vertices of U in each triangle of $G - v_{10}$ to cover all the edges of the triangle. We need at least one more vertex in U to cover the edges incident with v_{10} . Thus $|U| \geq 7 = |U_1|$. Thus U_1 is a minimum cover of G. (Solution not unique.)

Q2 The complete graph K_n is the graph with n vertices in which each vertex is joined to every other vertex by an edge. The complete bipartite graph $K_{m,n}$ is the graph with vertices partitioned into two sets X, Y where |X| = m, |Y| = n, and in which each vertex of X is joined to every vertex of Y by an edge.

- (a) Draw K_4 , K_5 , $K_{3,3}$, and $K_{3,4}$.
- (b) Determine $match(K_n)$, $cov(K_n)$, $match(K_{m,n})$, and $cov(K_{m,n})$ for all integers $1 \le m \le n$. Justify your answers.

(a)



(b) $match(K_n) = |n/2|$.

Justification. Let $V(K_n) = \{v_1, v_2, \ldots, v_n\}$. Let M be a maximum matching in K_n . Since the edges in M have no common end vertices we have $2|M| \leq n$. Thus $match(K_n) = |M| \leq \lfloor n/2 \rfloor$. If n is even, say n = 2t, then $M_1 = \{v_1v_2, v_3v_4, \ldots, v_{2t-1}v_{2t}\}$ is a matching in G of size $\lfloor n/2 \rfloor = t$. If n is odd, say n = 2t + 1, then $M_1 = \{v_1v_2, v_3v_4, \ldots, v_{2t-1}v_{2t}\}$ is a matching in G of size $\lfloor n/2 \rfloor = t$. Thus $match(K_n) = \lfloor n/2 \rfloor$.

 $cov(K_n) = n - 1.$

Justification. Let U be a minimum cover of K_n . If $|U| \le n-2$ then we may choose $v_i, v_j \in V(K_n) - U$, and U will not cover the edge $v_i v_j$. Thus $cov K_n = |U| \ge n-1$. Since $U_1 = \{v_1, v_2, \dots, v_{n-1}\}$ is a cover of G of size n-1, we have $cov(K_n) = n-1$.

 $match(K_{m,n}) = m = cov(K_{m,n}).$

Justification. Let $V(K_{m,n}) = X \cup Y$ where $X = \{x_1, x_2, \dots, x_m\}$ and $Y = \{y_1, y_2, \dots, y_n\}$. Then $M = \{x_1y_1, x_2y_2, \dots, x_my_m\}$ is a matching in $K_{m,n}$ and $X = \{x_1, x_2, \dots, x_m\}$ is a cover of $K_{m,n}$. Since |M| = m = |X|, Corollary 5.1.7 from the notes implies that M is a maximum matching of $K_{m,n}$ and X is a minimum cover of $K_{m,n}$.

- Q3 (a) Write down the iterative step in Dijkstra's algorithm.
- (b) Prove that the time taken by the (i + 1)'th iteration of Dijkstra's algorithm applied to a network N is $O(|V(N)| + d_N(x_{i+1}))$, assuming that all elementary arithmetic operations can be performed in constant time no matter how large the numbers involved are.
- (c) Deduce that, under the same assumption, the total time taken when Dijkstra's algorithm is run on N is $O(|V(N)|^2 + |E(N)|)$. Hence deduce that Dijkstra's algorithm is strongly polynomial.
- (a) [Iterative Step] Suppose we have constructed a tree T_i with $V(T_i) =$ $\{x_1, x_2, \dots, x_i\}$ for some $i \geq 1$ and have labelled all vertices $y \in V(N)$ – $V(T_i)$ with a label $label_i(y) = [x, h_i(y)].$
 - If $V(T_i) \neq V(N)$ then choose a vertex $\hat{y} \in V(N) V(T_i)$ such that $label_i(\hat{y}) = [\hat{x}, h_i(\hat{y})]$ and $h_i(\hat{y})$ is as small as possible. Put $x_{i+1} = \hat{y}$ and $T_{i+1} := T_i + x_{i+1} + \hat{x}x_{i+1}$. For each vertex $y \in V(N) - V(T_{i+1})$

$$label_{i+1}(y) = \begin{cases} [x_{i+1}, h_i(x_{i+1}) + w(x_{i+1}y)] & \text{if } y \text{ is adjacent to } x_{i+1} \text{ and} \\ h_i(x_{i+1}) + w(x_{i+1}y) < h_i(y), \\ label_i(y) & \text{otherwise.} \end{cases}$$

- If $V(T_i) = V(N)$ then STOP. Put $T = T_i$ and output T.
- (b) In the (i+1)'th iteration we first grow the tree T_i . This involves looking at the labels on all vertices in $V(N) - V(T_i)$ and choosing the vertex \hat{y} such that $h_i(\hat{y})$ is as small as possible. Since $|V(N) - V(T_i)| < |V(N)|$, and since elementary arithmetic operations take constant time, the time taken will be O(|V(N)|). We then update the labels. This involves looking at all edges incident to x_{i+1} , calculating the sum of two numbers and comparing a previous vertex label to this sum, so the time taken will be $O(d_N(x_{i+1}))$. Hence the total time taken in the (i+1)'th iteration is $O(|V(N)| + d_N(x_{i+1}))$.
- (c) Since the number of iterations is |V(N)|, the total time taken by the algorithm is

$$O\left(|V(N)|^2 + \sum_{i=0}^{|V(N)|-1} d_N(x_{i+1})\right) = O\left(|V(N)|^2 + |E(N)|\right),\,$$

since $\sum_{i=0}^{|V(N)|-1} d_N(x_{i+1}) = 2|E(N)|$. Since $|V(N)|^2 + |E(N)|$ is a polynomial in |V(N)| and |E(N)|, the algorithm is strongly polynomial.