MAS210 Graph Theory Exercises 5 Solutions
Q1 Consider the following directed network N.
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The numbers in brackets define an xzy-flow f1 in N. The numbers not in
brackets define the capacities of the arcs of N.

(a) Determine the value of fi.

(b) Grow a mazimal fi-unsaturated tree Ty rooted at x and use T} to con-
struct an xy-flow fo in x with val(fe) > val(f1).

(c) Grow a mazimal fy-unsaturated tree Ty rooted at x and use Ty to con-
struct a set U C V(N) with x € U, y € V(N) — U and c¢t(U) = val(fz).
Ezxplain why this equality implies that fo is an xy-flow of mazimum value in
N and AL (U) is an xy-arc cut of minimum capacity.

(a) val(f1) =3+2+0=5.
(b) Maximal fi-unsaturated tree rooted at x is
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Use the fi-unsaturated path zvsvsvsvey to send one extra unit of flow from
x to y to give the new zy-flow fo shown below.
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(c) Maximal fi-unsaturated tree rooted at x is
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The tree does not reach y. Put U = V(Ts) = {x, v, vy, v1,v5}. We have
ct(U)=2+14241=6=1+2+43 = val(f2). We know from lectures that
the value of any zy-flow is at most ¢t (U). Since val(f2) = ¢ (U), fo must
be an zy-flow of maximum value. Similarly, we know that the capacity of
any zy-arc-cut is at least val(f2). Since ¢™(U) = val(f2), AN (U) must be
an ry-arc-cut of minimum capacity.

Q2 Let N be a directed network, x,y € V(N), and let f be an xy-flow in
N. Suppose that P is an f-unsaturated path from x to y in N. Define
g:A(N)—Z by

Q

f(e) ife g A(P)
gle) =< fle)+1 ifeisa forward arc of P
fle) =1 ifeis a backward arc of P

Prove that g is an xy-flow in N and that val(g) = val(f) + 1.

To prove that ¢ is an zy-flow in IV, we need to show

(i) 0 < g(e) <c(e) for all e € A(N), and

(i) gt (v) = g~ (v) for all v € V(N) — {z,y}.

Condition (i) follows since 0 < f(e) < c¢(e) for all e € A(P), 0 < f(e) <
c(e) — 1 for all forward arcs e of P, and 1 < f(e) < ¢(e) for all backward
arcs e of P.



To verify (ii) we choose v € V(N) — {x,y}. We need to consider different
cases.

Case 1: v € V(P). Then g(e) = f(e) for all arcs incident to v so g*(v) =
[Ty =f"(v) =g~ (v).

Case 2: v lies on P. let e; be the arc preceding v on P and ey be the arc
following v on P.

Case 2.1: e; and eg are both forward arcs of P. Then g™ (v) = fT(v) +1=
F @) +1=g (v).

Case 2.2: e1 and eg are both backward arcs of P. Then g (v) = fT(v)—1=
f7) =1=g"(v).

Case 2.3: e is a forward arc of P and ey is a backward arc of P. Then
o) = FH(0) = £~ (0) = g~ (v).

Case 2.4: ey is a backward arc of P and ey is a forward arc of P. Then
gHw) = FH(0) = £~ (0) = g~ (v).

We next show that val(g) = val(f) + 1. Let ey be the arc of P incident to
x. We have g(e) = f(e) for all other arcs e of N which are incident to z. If
ep is a forward arc of P then g(eg) = f(eg) + 1. Thus gt (v) = fT(v) + 1,
g~ (v) = f~(v) and val(g) = val(f)+1. On the other hand, if e is a backward
arc of P then g(eg) = f(eg) —1. Thus g*(v) = fT(v), g~ (v) = f~(v) — 1
and val(g) = val(f) + 1.

Q3 Let N be a directed network, x,y € V(N), and let f be an xy-flow in
N of mazimum value. Let U be the set of all vertices which can be reached
from x by f-unsaturated paths. Prove that

(a) y ¢ U.

(b) All arcs e € AL (U) satisfy f(e) = c(e) and all arcs e € Ay (U) satisfy
fle)=0.

(c) val(f) = c+(U).

(a) If y € U then N would have an f-unsaturated path from z to y. This
would contradict the fact that f is an xy-flow of maximum value (by Q2

above). Thus y ¢ U.

(b) Choose e € A (U). Then e = uv for some vertices u € U and v ¢ U.
Since u € U there is an f-unsaturated path P from x to u in N. If f(e) <
c(e), then we could add e to P to get an f-unsaturated path P from z to v
in N. This would contradict the fact that v & U. Hence f(e) = c(e).
Choose e € A (U). Then e = vu for some vertices u € U and v ¢ U. Since
u € U there is an f-unsaturated path P from z to u in N. If f(e) > 0, then
we could add e to P to get an f-unsaturated path P from x to v in N. This
would contradict the fact that v & U. Hence f(e) = 0.



(c) Using (b) we have

val(f) = [TU)=f~U) = Y fle= Y fle= Y cde)-0=c"(U).

e€ AL (V) e€AN(U) e€AL(U)

Q4 Let D be a digraph and x,y € V(D). Suppose that dJDr(v) = dp(v) for
allv e V(D) —A{x,y}. Let U C V(D) withxz € U and y € V(D) —U. Let
d5(U) be the number of arcs of D from U to V(D) — U and d(U) be the
number of arcs of D from V(D) —U to U.

(a) Prove that d5(U) — dp(U) = d},(z) — dp(z).

(b) Deduce that if d},(z) > dp,(x) then there exists a directed path from x to
Y.

(a) Since d;(v) = dp(v) for all v € U — z, we have

dj () =D dhu) =) dpw)

uelU uelU

The sums on the right hand side of the above equality count the arcs
incident with vertices of U. There are three alternatives for such an arc e.

e ¢ is incident with two vertices of U. Then e is counted once in
> wev db(u) and once in Y-, oy dp (u) so its contribution to Y-, oy df, (u)—

> wer dp(u) is zero.

e ¢ € AL (U). Then e is counted once in Y-, ., d},(u) so its contribution
t0 Yuer dh(u) = Xyep dp(u) is 1.

e ¢ € Ay(U). Then e is counted once in ), ;; d,(u) so its contribution
to Y e dh(w) — X e dp(u) is —1.
Thus

> dp(w) = > dp(u (U)] = [AN(U)] = dpp(U) = dp (V).

uelU uelU

Hence df(z) — dp(z) = d5(U) — d(U).

(b) Let U be the set of all vertices of N which can be reached from x by di-
rected paths. Suppose y ¢ U. By (a), d5(U)—dp(U) = df(x) —dp(x) > 0.
In particular, df,(U) > 0. Thus there is an arc e from some vertex u € U
to some vertex v € V(D) — U. But then we can add e to a directed path
from x to u to get a directed path from u to v. This contradicts the fact
that v € U. Thus we must have y € U. Hence there is a directed path in D



from x to y.

Q5 Let N be an acyclic directed network and {x1,x2,...,z,} be an acyclic
labeling of D.

(a) Explain why the time that Moravék’s algorithm takes to construct the
out-arborescence T; from the out-arborescence Ti—1 is O(dy(x;)).

(b) Deduce that the total time taken by Moravék’s algorithm to construct a
spanning out-arborescence of N is O(|A(N)]).

(a) In the i’th iteration of Moravek’s algorithm, we consider each arc enter-
ing x; and choose the arc ;x; entering x; for which disty, | (v12;) +w(zjz;)
is as large as possible. Thus the time taken by the i’th iteration is O(d y (x;)).
(b) Since Y 1" | dy(x;)) = |A(N)|, the time taken for the algorithm to con-
struct a spanning out arborescence is O(> ;" dy(z;)) = O(JA(N)]).



