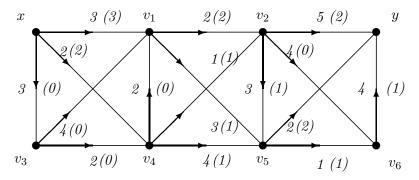
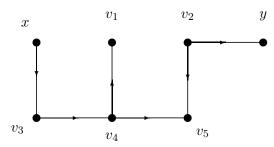
## MAS210 Graph Theory Exercises 5 Solutions

Q1 Consider the following directed network N.

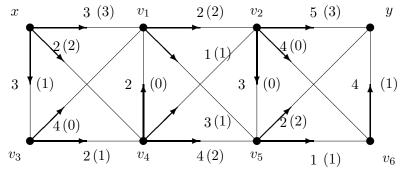


The numbers in brackets define an xy-flow  $f_1$  in N. The numbers not in brackets define the capacities of the arcs of N.

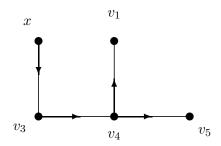
- (a) Determine the value of  $f_1$ .
- (b) Grow a maximal  $f_1$ -unsaturated tree  $T_1$  rooted at x and use  $T_1$  to construct an xy-flow  $f_2$  in x with  $val(f_2) > val(f_1)$ .
- (c) Grow a maximal  $f_2$ -unsaturated tree  $T_2$  rooted at x and use  $T_2$  to construct a set  $U \subset V(N)$  with  $x \in U$ ,  $y \in V(N) U$  and  $c^+(U) = val(f_2)$ . Explain why this equality implies that  $f_2$  is an xy-flow of maximum value in N and  $A_N^+(U)$  is an xy-arc cut of minimum capacity.
- (a)  $val(f_1) = 3 + 2 + 0 = 5$ .
- (b) Maximal  $f_1$ -unsaturated tree rooted at x is



Use the  $f_1$ -unsaturated path  $xv_3v_4v_5v_2y$  to send one extra unit of flow from x to y to give the new xy-flow  $f_2$  shown below.



(c) Maximal  $f_1$ -unsaturated tree rooted at x is



The tree does not reach y. Put  $U = V(T_2) = \{x, v_3, v_4, v_1, v_5\}$ . We have  $c^+(U) = 2+1+2+1 = 6 = 1+2+3 = val(f_2)$ . We know from lectures that the value of any xy-flow is at most  $c^+(U)$ . Since  $val(f_2) = c^+(U)$ ,  $f_2$  must be an xy-flow of maximum value. Similarly, we know that the capacity of any xy-arc-cut is at least  $val(f_2)$ . Since  $c^+(U) = val(f_2)$ ,  $A_N^+(U)$  must be an xy-arc-cut of minimum capacity.

Q2 Let N be a directed network,  $x, y \in V(N)$ , and let f be an xy-flow in N. Suppose that P is an f-unsaturated path from x to y in N. Define  $g: A(N) \to \mathbb{Z}$  by

$$g(e) = \begin{cases} f(e) & \text{if } e \not\in A(P) \\ f(e) + 1 & \text{if } e \text{ is a forward arc of } P \\ f(e) - 1 & \text{if } e \text{ is a backward arc of } P \end{cases}$$

Prove that g is an xy-flow in N and that val(g) = val(f) + 1.

To prove that g is an xy-flow in N, we need to show

- (i)  $0 \le g(e) \le c(e)$  for all  $e \in A(N)$ , and
- (ii)  $g^+(v) = g^-(v)$  for all  $v \in V(N) \{x, y\}$ .

Condition (i) follows since  $0 \le f(e) \le c(e)$  for all  $e \notin A(P)$ ,  $0 \le f(e) \le c(e) - 1$  for all forward arcs e of P, and  $1 \le f(e) \le c(e)$  for all backward arcs e of P.

To verify (ii) we choose  $v \in V(N) - \{x, y\}$ . We need to consider different cases.

Case 1:  $v \notin V(P)$ . Then g(e) = f(e) for all arcs incident to v so  $g^+(v) = f^+(v) = f^-(v) = g^-(v)$ .

Case 2: v lies on P. let  $e_1$  be the arc preceding v on P and  $e_2$  be the arc following v on P.

Case 2.1:  $e_1$  and  $e_2$  are both forward arcs of P. Then  $g^+(v) = f^+(v) + 1 = f^-(v) + 1 = g^-(v)$ .

Case 2.2:  $e_1$  and  $e_2$  are both backward arcs of P. Then  $g^+(v) = f^+(v) - 1 = f^-(v) - 1 = g^-(v)$ .

Case 2.3:  $e_1$  is a forward arc of P and  $e_2$  is a backward arc of P. Then  $g^+(v) = f^+(v) = f^-(v) = g^-(v)$ .

Case 2.4:  $e_1$  is a backward arc of P and  $e_2$  is a forward arc of P. Then  $g^+(v) = f^+(v) = f^-(v) = g^-(v)$ .

We next show that val(g) = val(f) + 1. Let  $e_0$  be the arc of P incident to x. We have g(e) = f(e) for all other arcs e of N which are incident to x. If  $e_0$  is a forward arc of P then  $g(e_0) = f(e_0) + 1$ . Thus  $g^+(v) = f^+(v) + 1$ ,  $g^-(v) = f^-(v)$  and val(g) = val(f) + 1. On the other hand, if e is a backward arc of P then  $g(e_0) = f(e_0) - 1$ . Thus  $g^+(v) = f^+(v)$ ,  $g^-(v) = f^-(v) - 1$  and val(g) = val(f) + 1.

- Q3 Let N be a directed network,  $x, y \in V(N)$ , and let f be an xy-flow in N of maximum value. Let U be the set of all vertices which can be reached from x by f-unsaturated paths. Prove that (a)  $y \notin U$ .
- (b) All arcs  $e \in A_N^+(U)$  satisfy f(e) = c(e) and all arcs  $e \in A_N^-(U)$  satisfy f(e) = 0.
- (c)  $val(f) = c^+(U)$ .
- (a) If  $y \in U$  then N would have an f-unsaturated path from x to y. This would contradict the fact that f is an xy-flow of maximum value (by Q2 above). Thus  $y \notin U$ .
- (b) Choose  $e \in A_N^+(U)$ . Then e = uv for some vertices  $u \in U$  and  $v \notin U$ . Since  $u \in U$  there is an f-unsaturated path P from x to u in N. If f(e) < c(e), then we could add e to P to get an f-unsaturated path P from x to v in N. This would contradict the fact that  $v \notin U$ . Hence f(e) = c(e).

Choose  $e \in A_N^-(U)$ . Then e = vu for some vertices  $u \in U$  and  $v \notin U$ . Since  $u \in U$  there is an f-unsaturated path P from x to u in N. If f(e) > 0, then we could add e to P to get an f-unsaturated path P from x to v in N. This would contradict the fact that  $v \notin U$ . Hence f(e) = 0.

(c) Using (b) we have

$$val(f) = f^+(U) - f^-(U) = \sum_{e \in A_N^+(U)} f(e) - \sum_{e \in A_N^-(U)} f(e) = \sum_{e \in A_N^+(U)} c(e) - 0 = c^+(U).$$

Q4 Let D be a digraph and  $x, y \in V(D)$ . Suppose that  $d_D^+(v) = d_D^-(v)$  for all  $v \in V(D) - \{x, y\}$ . Let  $U \subset V(D)$  with  $x \in U$  and  $y \in V(D) - U$ . Let  $d_D^+(U)$  be the number of arcs of D from U to V(D) - U and  $d_D^-(U)$  be the number of arcs of D from V(D) - U to U.

- (a) Prove that  $d_D^+(U) d_D^-(U) = d_D^+(x) d_D^-(x)$ .
- (b) Deduce that if  $d_D^+(x) > d_D^-(x)$  then there exists a directed path from x to y.
- (a) Since  $d_D^+(v) = d_D^-(v)$  for all  $v \in U x$ , we have

$$d_D^+(x) - d_D^-(x) = \sum_{u \in U} d_D^+(u) - \sum_{u \in U} d_D^-(u).$$

The sums on the right hand side of the above equality count the arcs incident with vertices of U. There are three alternatives for such an arc e.

- e is incident with two vertices of U. Then e is counted once in  $\sum_{u \in U} d_D^+(u)$  and once in  $\sum_{u \in U} d_D^-(u)$  so its contribution to  $\sum_{u \in U} d_D^+(u) \sum_{u \in U} d_D^-(u)$  is zero.
- $e \in A_N^+(U)$ . Then e is counted once in  $\sum_{u \in U} d_D^+(u)$  so its contribution to  $\sum_{u \in U} d_D^+(u) \sum_{u \in U} d_D^-(u)$  is 1.
- $e \in A_N^-(U)$ . Then e is counted once in  $\sum_{u \in U} d_D^-(u)$  so its contribution to  $\sum_{u \in U} d_D^+(u) \sum_{u \in U} d_D^-(u)$  is -1.

Thus

$$\sum_{u \in U} d_D^+(u) - \sum_{u \in U} d_D^-(u) = |A_N^+(U)| - |A_N^-(U)| = d_D^+(U) - d_D^-(U).$$

Hence  $d_D^+(x) - d_D^-(x) = d_D^+(U) - d_D^-(U)$ .

(b) Let U be the set of all vertices of N which can be reached from x by directed paths. Suppose  $y \notin U$ . By (a),  $d_D^+(U) - d_D^-(U) = d_D^+(x) - d_D^-(x) > 0$ . In particular,  $d_D^+(U) > 0$ . Thus there is an arc e from some vertex  $u \in U$  to some vertex  $v \in V(D) - U$ . But then we can add e to a directed path from x to u to get a directed path from u to v. This contradicts the fact that  $v \notin U$ . Thus we must have  $y \in U$ . Hence there is a directed path in D

from x to y.

- Q5 Let N be an acyclic directed network and  $\{x_1, x_2, ..., x_n\}$  be an acyclic labeling of D.
- (a) Explain why the time that Moravék's algorithm takes to construct the out-arborescence  $T_i$  from the out-arborescence  $T_{i-1}$  is  $O(d_N^-(x_i))$ .
- (b) Deduce that the total time taken by Moravék's algorithm to construct a spanning out-arborescence of N is O(|A(N)|).
- (a) In the *i*'th iteration of Morávek's algorithm, we consider each arc entering  $x_i$  and choose the arc  $x_j x_i$  entering  $x_i$  for which  $dist_{T_{i-1}}(x_1 x_j) + w(x_j x_i)$  is as large as possible. Thus the time taken by the *i*'th iteration is  $O(d_N^-(x_i))$ .
- (b) Since  $\sum_{i=1}^{n} d_N^-(x_i) = |A(N)|$ , the time taken for the algorithm to construct a spanning out arborescence is  $O(\sum_{i=1}^{n} d_N^-(x_i)) = O(|A(N)|)$ .