
MAS210 Graph Theory Exercises 4 Solutions

Q1 Consider the following network N .
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An implementation of Dijkstra’s algorithm starting at v1 produces the fol-
lowing tree T4 at the end of the fourth iteration: V (T4) = {v1, v2, v3, v6}
and E(T4) = {v1v2, v2v3, v1v6}. It also gives the vertex labels shown in the
following table.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

x1 x2 x4 [x2, 4] [x2, 7] x3 [x2, 3] [x4, 7] [x3, 5] [x1,∞] [x3, 4]

List the edge(s) of N which could be added to T4 in the next iteration and,
for each such edge, give a table showing the new vertex labels.

Next edge to be added is v2v7. New vertex labels are:

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

x1 x2 x4 [x2, 4] [x5, 4] x3 x5 [x5, 6] [x3, 5] [x1,∞] [x3, 4]

Q2 Show that Dijkstra’s algorithm for constructing a shortest path spanning
tree rooted at a vertex v1 in a network may not work if the network is allowed
to have edges with negative weights by assigning suitable weights to the edges
in the following network.
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Assign edge weights as below.
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Then Dijkstra’s algorithm produces the spanning tree T with E(T ) = {v1v4, v1v2, v2v3}.
The path in T from v1 to v2 is P = v1v2 which has length 2. However the
shortest path in N from v1 to v2 is P = v1v4v3v2, which has length 1.

Q3 Consider the following acyclic directed network N .
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(a) Construct an acyclic labeling of the vertices of N .
(b) Use your acyclic labeling to find a spanning out-arborescence of N rooted
at v which contains longest directed paths from v1 to every vertex of N .
(c) Use your acyclic labeling to find a spanning out-arborescence of N rooted
at v which contains shortest directed paths from v1 to every vertex of N .
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(a) Acyclic labelling is shown below.
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(b) Spanning longest path out-arborescence rooted at v1 is
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(c) Spanning shortest path out-arborescence rooted at v1 is
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Q4 Let N be an acyclic directed network and v be a vertex of N such that
N contains a directed path from v to every vertex of N . Let Ti be an out-
arborescence rooted at v produced in the i’th iteration of Morávek’s algorithm
for finding longest paths applied to N .
(a) Prove that the unique path in Ti from v to each vertex x of Ti is a longest
path in N from v to x.
(b) Does your proof assume that N has positive edge weights?

(a) Proof Let longN (x1, xi) denote the length of a longest directed path in
N from x1 to xi, for all 1 ≤ i ≤ n. We need to show that distTi

(x1, x) =
longN (x1, x) for all x ∈ V (Ti). We use induction on i.
Base Case i = 1. Since T1 is an out arborescence with one vertex x1 = v

and no edges, we have distT1
(v, x1) = 0 = longN (v, x1).

Induction Hypothesis Suppose i ≥ 2 and that distTi−1
(x1, x) = longN (x1, x)

for each vertex x of Ti−1.
Inductive Step We have Ti = Ti−1 + xi + xjxi where xj ∈ V (Ti−1),
xjxi ∈ A(N), and xj is chosen such that distTi−1

(v, xj) + w(xjxi) is as
large as possible. Since distTi

(x1, x) = distTi−1
(x1, x) = longN (x1, x) for all

x ∈ V (Ti−1), it suffices to show that distTi
(x1, xi) = longN (x1, xi). We have

longN (x1, xi) ≥ distTi−1
(x1xj) + w(xjxi), (1)

since there is a directed path in N from x1 to xi of length distTi−1
(x1, xj)+

w(xjxi). On the other hand, if P = x1u1u2 . . . urxi is a longest directed
path in N from x1 to xi, then, since urxi ∈ A(N) and x1, x2, . . . , xn is an
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acyclic labelling of N , we must have ur = xk for some 1 ≤ k ≤ i − 1. Let
P ′ = x1u1u2 . . . ur. Then

longN (x1, xi) = w(P ) = w(P ′) + w(xkxi) ≤ longN (x1, xk) + w(xkxi)

= distTi−1
(x1, xk) + w(xkxi),

(2)

by the induction hypothesis, since xk ∈ V (Ti−1). In the i’th step in Morávek’s
algorithm we chose the vertex xj so that distTi−1

(x1, xj) + w(xjxi) was as
large as possible. Thus

distTi−1
(x1, xj) + w(xjxi) ≥ distTi−1

(x1, xk) + w(xkxi). (3)

Combining (1), (2) and (3), we obtain

longN (x1, xi) ≥ distTi−1
(x1xj) + w(xjxi) ≥ distTi−1

(x1, xk) + w(xkxi)

≥ longN (x1, xi).

Hence equality must hold throughout, and in particular

longN (x1, xi) = distTi−1
(x1xj) + w(xjxi) = distTi

(x1xi).

(b) The above proof does not assume that arc weights are positive.
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