MAS210 Graph Theory Exercises 3 Solutions

Q1 Consider the following network N.

(a) An implementation of Prim's algorithm starting at v_1 produces the following tree T_4 at the end of the fourth iteration: $V(T_4) = \{v_1, v_2, v_3, v_6\}$ and $E(T_4) = \{v_1v_2, v_2v_3, v_1v_6\}$. It also gives the vertex labels shown in the following table.

List the edge(s) of N which could be added to T_5 in the next iteration and, for each such edge, give a table showing the new vertex labels.

Possibel edges are v_2v_7 and v_6v_{11} .

If we add v_2v_7 then the new vertex labels will be:

If we add v_6v_{11} then the new vertex labels will be:

(b) An implementation of Kruskal's algorithm produces the following forest F_7 at the end of the seventh iteration: $V(F_7) = V(N)$, and $E(F_7) = \{v_1v_2, v_5v_7, v_5v_8, v_7v_{11}, v_8v_{10}, v_2v_3, v_6v_{11}\}$. List the edge(s) of N which could

be added to F_7 in the next iteration.

Possibel edges are v_1v_6 , v_4v_7 and v_2v_7 .

Q2 Let N be a network and F_i be a forest produced in the i'th iteration of Kruskal's algorithm applied to N. Prove that F_i is contained in a minimum weight spanning tree of N.

Proof We use induction on i.

Base Case i = 1. Since F_1 is a spanning forest of N with no edges, it is contained in all (minimum weight) spanning trees of N.

Induction Hypothesis Suppose $i \geq 2$ and that F_{i-1} is contained in a minimum weight spanning tree of N.

Inductive Step Let T be a minimum weight spanning tree of N containing F_{i-1} . We have $F_i = F_{i-1} + e$ for some edge e of N. If $e \in E(T)$ then F_i is contained in T and we are done. Thus we may suppose that $e \notin E(T)$. Let H = T + e. Since H - e = T is connected, e is not a bridge of H. Thus e is contained in some cycle C of H. Let f be an edge of C which does not belong to F_{i-1} . Note that f must exist since otherwise we would have $C - e \subseteq F_{i-1}$ and hence $C \subseteq F_i$, which is impossible since F_i is a forest. Let T' = H - f. (So T' = T + e - f). Since f is contained in a cycle C of H, f is not a bridge of H. Thus T' is connected. Since

$$|E(T')| = |E(T)| = |V(T)| - 1 = |V(N)| - 1 = |V(T')| - 1,$$

T' is also a spanning tree of N. Furthermore $F_i \subseteq T'$. We complete the proof by showing that T' is a minimum weight spanning tree of N.

In the *i*'th step of Kruskal's algorithm, we chose the edge e as an edge of $E(N) - E(F_{i-1})$ such that $F_{i-1} + e$ contains no cycles and, subject to this condition, w(e) is as small as possible. We have $f \in E(N) - E(F_{i-1})$, and, since $F_{i-1} \subseteq T$, $F_{i-1} + f$ contains no cycles. Hence, we must have

 $w(f) \ge w(e)$. Thus $w(T') = w(T) - w(f) + w(e) \le w(T)$. Since T is a minimum weight spanning tree of N, we must have w(T') = w(T) and T' is another minimum weight spanning tree of N.

Deduce that the output of Kruskal's algorithm is indeed a minimum weight spanning tree of N.

Proof The output from Kruskal's algorithm is a spanning forest of N with |V(N)|-1 and hence is a spanning tree T^* of N. It follows from the above that T^* is contained in a minimum weight spanning tree T for N. Since both T^* and T are spanning trees of N we must have $T^*=T$.

Q3 Let N be a directed network and v be a vertex of N such that every vertex of N can be reached from v_1 by a directed path. An *out-arborescence* of N rooted at v is a directed tree T in N which contains a directed path from v to every vertex of T (so all edges in T are directed 'away from' v). We could try to modify Prim's algorithm to find a minimum weight spanning out-arborescence of N rooted at v as follows.

Initial Step Put $x_1 := v$ and let T_1 be the arborescence with $V(T_1) = \{x_1\}$ and $E(T_1) = \emptyset$.

Iterative Step Suppose we have constructed an arborescence T_i with $V(T_i) = \{x_1, x_2, \dots, x_i\}$ for some $i \geq 1$.

- If $V(T_i) \neq V(N)$ then choose an arc e of N from a vertex x_j of T_i to a vertex y of $N T_i$ such that w(e) is as small as possible. Put $x_{i+1} = y$ and $T_{i+1} := T_i + x_{i+1} + e$.
- If $V(T_i) = V(N)$ then STOP. Put $T = T_i$ and output T.

Choose weights for the arcs in the following digraph to get a directed network N for which the above algorithm does not give a minimum weight spanning arborescence rooted at v_1 .

Let $w(v_1v_2) = 3$, $w(v_1v_3) = 2$, $w(v_2v_3) = 1$. Then the above algorithm constructs the spanning out-arborescence T^* with $A(T^*) = \{v_1v_3, v_1v_2\}$ and

 $w(T^*)=5$. However the minimum weight spanning out-arborescence T of N has $A(T)=\{v_1v_2,v_2v_3\}$ and $w(T^*)=4$.

Q4 (a) Let G be a connected graph and H be a connected spanning subgraph of G with as few edges as possible. Prove that H is a spanning tree of G.

Proof Let e be an edge of H. Then H-e must be disconnected (otherwise it would be a connected spanning subgraph of G with fewer edges than H. Thus every edge of H is a bridge. Thus H contains no cycles and hence H is a tree.

(b) Let F be a connected graph such that |E(F)| = |V(F)| - 1. Prove that F is a tree.

Proof Let T be a spanning tree of F. (We know that all graphs have a spanning tree by (a)). Then

$$|E(T)| = |V(T)| - 1 = |V(F)| - 1 = |E(F)|$$

Since $E(T) \subseteq E(F)$ we have E(T) = E(F) and hence F is a tree.