
MAS210 Graph Theory Exercises 3 Solutions

Q1 Consider the following network N .
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(a) An implementation of Prim’s algorithm starting at v1 produces the fol-
lowing tree T4 at the end of the fourth iteration: V (T4) = {v1, v2, v3, v6}
and E(T4) = {v1v2, v2v3, v1v6}. It also gives the vertex labels shown in the
following table.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

x1 x2 x3 [x4, 3] [x2, 6] x4 [x2, 2] [x3, 4] [x4, 3] [x1,∞] [x4, 2]

List the edge(s) of N which could be added to T5 in the next iteration and,
for each such edge, give a table showing the new vertex labels.

Possibel edges are v2v7 and v6v11.

If we add v2v7 then the new vertex labels will be:

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

x1 x2 x3 [x5, 2] [x5, 1] x4 x5 [x5, 3] [x4, 3] [x1,∞] [x5, 1]

If we add v6v11 then the new vertex labels will be:

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

x1 x2 x3 [x4, 3] [x2, 6] x4 [x5, 1] [x3, 4] [x4, 3] [x5, 2] x5

(b) An implementation of Kruskal’s algorithm produces the following for-
est F7 at the end of the seventh iteration: V (F7) = V (N), and E(F7) =
{v1v2, v5v7, v5v8, v7v11, v8v10, v2v3, v6v11}. List the edge(s) of N which could
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be added to F7 in the next iteration.

Possibel edges are v1v6, v4v7 and v2v7.

Q2 Let N be a network and Fi be a forest produced in the i’th iteration of
Kruskal’s algorithm applied to N . Prove that Fi is contained in a minimum
weight spanning tree of N .

Proof We use induction on i.
Base Case i = 1. Since F1 is a spanning forest of N with no edges, it is
contained in all (minimum weight) spanning trees of N .
Induction Hypothesis Suppose i ≥ 2 and that Fi−1 is contained in a
minimum weight spanning tree of N .
Inductive Step Let T be a minimum weight spanning tree of N containing
Fi−1. We have Fi = Fi−1 + e for some edge e of N . If e ∈ E(T ) then Fi is
contained in T and we are done. Thus we may suppose that e 6∈ E(T ). Let
H = T + e. Since H − e = T is connected, e is not a bridge of H. Thus
e is contained in some cycle C of H. Let f be an edge of C which does
not belong to Fi−1. Note that f must exist since otherwise we would have
C − e ⊆ Fi−1 and hence C ⊆ Fi, which is impossible since Fi is a forest. Let
T ′ = H − f . (So T ′ = T + e − f). Since f is contained in a cycle C of H, f

is not a bridge of H. Thus T ′ is connected. Since

|E(T ′)| = |E(T )| = |V (T )| − 1 = |V (N)| − 1 = |V (T ′)| − 1,

T ′ is also a spanning tree of N . Furthermore Fi ⊆ T ′. We complete the
proof by showing that T ′ is a minimum weight spanning tree of N .
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In the i’th step of Kruskal’s algorithm, we chose the edge e as an edge of
E(N) − E(Fi−1) such that Fi−1 + e contains no cycles and, subject to this
condition, w(e) is as small as possible. We have f ∈ E(N) − E(Fi−1),
and, since Fi−1 ⊆ T , Fi−1 + f contains no cycles. Hence, we must have
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w(f) ≥ w(e). Thus w(T ′) = w(T ) − w(f) + w(e) ≤ w(T ). Since T is a
minimum weight spanning tree of N , we must have w(T ′) = w(T ) and T ′ is
another minimum weight spanning tree of N .

Deduce that the output of Kruskal’s algorithm is indeed a minimum weight
spanning tree of N .

Proof The output from Kruskal’s algorithm is a spanning forest of N with
|V (N)| − 1 and hence is a spanning tree T ∗ of N . It follows from the above
that T ∗ is contained in a minimum weight spanning tree T for N . Since
both T ∗ and T are spanning trees of N we must have T ∗ = T .

Q3 Let N be a directed network and v be a vertex of N such that every
vertex of N can be reached from v1 by a directed path. An out-arborescence
of N rooted at v is a directed tree T in N which contains a directed path
from v to every vertex of T (so all edges in T are directed ‘away from’ v). We
could try to modify Prim’s algorithm to find a minimum weight spanning
out-arborescence of N rooted at v as follows.

Initial Step Put x1 := v and let T1 be the arborescence with V (T1) = {x1}
and E(T1) = ∅.

Iterative Step Suppose we have constructed an arborescence Ti with V (Ti) =
{x1, x2, . . . , xi} for some i ≥ 1.

• If V (Ti) 6= V (N) then choose an arc e of N from a vertex xj of
Ti to a vertex y of N − Ti such that w(e) is as small as possible.
Put xi+1 = y and Ti+1 := Ti + xi+1 + e.

• If V (Ti) = V (N) then STOP. Put T = Ti and output T .

Choose weights for the arcs in the following digraph to get a directed
network N for which the above algorithm does not give a minimum weight
spanning arborescence rooted at v1.
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Let w(v1v2) = 3, w(v1v3) = 2, w(v2v3) = 1. Then the above algorithm
constructs the spanning out-arborescence T ∗ with A(T ∗) = {v1v3, v1v2} and
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w(T ∗) = 5. However the minimum weight spanning out-arborescence T of
N has A(T ) = {v1v2, v2v3} and w(T ∗) = 4.

Q4 (a) Let G be a connected graph and H be a connected spanning subgraph
of G with as few edges as possible. Prove that H is a spanning tree of G.

Proof Let e be an edge of H. Then H − e must be disconnected (otherwise
it would be a connected spanning subgraph of G with fewer edges than H.
Thus every edge of H is a bridge. Thus H contains no cycles and hence H

is a tree.

(b) Let F be a connected graph such that |E(F )| = |V (F )| − 1. Prove that
F is a tree.

Proof Let T be a spanning tree of F . (We know that all graphs have a
spanning tree by (a)). Then

|E(T )| = |V (T )| − 1 = |V (F )| − 1 = |E(F )|

Since E(T ) ⊆ E(F ) we have E(T ) = E(F ) and hence F is a tree.
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