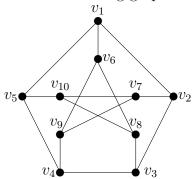
MAS210 Graph Theory Exercises 2 Solutions

Q1 Consider the following graph G.



(a) An implementation of the basic tree growing algorithm starting at v_7 produces the following tree T_5 at the end of the fifth iteration: $V(T_5) = \{x_1, x_2, x_3, x_4, x_5\}$ where $x_1 = v_7$, $x_2 = v_{10}$, $x_3 = v_5$, $x_4 = v_2$, $x_5 = v_8$, and $E(T_5) = \{v_7v_{10}, v_{10}v_5, v_7v_2, v_{10}v_8\}$. List the edges of G which could be added to T_5 in the next iteration.

 $v_7v_9, v_5v_4, v_5v_1, v_2v_3, v_2v_1, v_8v_6, v_8v_3$

(b) An implementation of breadth first search starting at v_7 produces the following tree T_5' at the end of the fifth iteration: $V(T_5') = \{x_1, x_2, x_3, x_4, x_5\}$ where $x_1 = v_7$, $x_2 = v_{10}$, $x_3 = v_2$, $x_4 = v_9$, $x_5 = v_8$, and $E(T_5') = \{v_7v_{10}, v_7v_2, v_7v_9, v_{10}v_8\}$. List the edges of G which could be added to T_5' in the next iteration.

 $v_{10}v_{5}$

(c) An implementation of depth first search starting at v_7 produces following tree T_5'' at the end of the fifth iteration: $V(T_5'') = \{x_1, x_2, x_3, x_4, x_5\}$ where $x_1 = v_7$, $x_2 = v_{10}$, $x_3 = v_5$, $x_4 = v_4$, $x_5 = v_9$, and $E(T_5'') = \{v_7v_{10}, v_{10}v_5, v_5v_4, v_4v_9\}$. List the edges of G which could be added to T_5'' in the next iteration.

 v_9v_6

Q2(a) Let D be a digraph and v be a vertex of D. Adapt the basic tree growing algorithm for (undirected) graphs to get an algorithm to construct a directed tree which contains all vertices in D which can be reached from v by a directed walk.

We use the following iterative procedure. In the i'th step of the iteration we

construct a directed tree T_i with vertices labeled x_1, x_2, \ldots, x_i and with all arcs directed away from v.

Initial Step Put $x_1 := v_1$ and let T_1 be the directed tree with $V(T_1) = \{x_1\}$ and $E(T_1) = \emptyset$.

Iterative Step Suppose we have constructed a directed tree T_i with $V(T_i) = \{x_1, x_2, \dots, x_i\}$ for some $i \geq 1$.

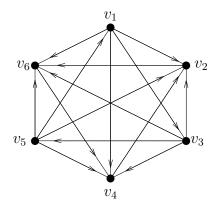
- If some arc e of D has a vertex x_j of T_i as its tail and a vertex y of $D T_i$ as its head then put $x_{i+1} = y$ and $T_{i+1} := T_i + x_{i+1} + e$.
- If no arc of D goes from T_i to $G T_i$ then STOP. Put $T = T_i$ and output T.
- (b) Indicate briefly why your algorithm is an efficient algorithm.

In each iteration we check at most all the arcs whose tail belongs to T_i , and hence we check at most |A(D)| arcs. Since each iteration increases the number of vertices of T_i , the number of iterations is at most |V(G)|. Thus the complexity of the algorithm is O(|V(G)||A(D)|).

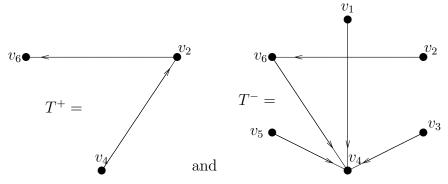
(c) How could you use your algorithm (and the analogous algorithm for finding all vertices of D which can reach v by a directed walk) to find the strongly connected component of D which contains v?

Construct a directed tree T^+ which contains all vertices in D which can be reached from v by a directed walk, and a directed tree T^- which contains all vertices in D which can reach v by a directed walk. Then $V(T^+) \cap V(T^-)$ is the set of all vertices which are linked to v by a directed walk in both directions. So $V(T^+) \cap V(T^-)$ is the vertex set of the strongly connected component H of D which contains v. We construct H by letting $V(H) = V(T^+) \cap V(T^-)$ and A(H) be the set of all arcs in D whose head and tail both belong to V(H).

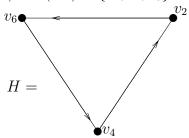
(d) Illustrate this algorithm by using it to construct the strongly connected component containing v_4 in the following digraph D.



We have



Thus, if H is the strongly connected component which contains v_4 , then $V(H)=V(T^+)\cap V(T^-)=\{v_4,v_2,v_6\}$ and



Q3 (a) Let G be a connected graph and e be an edge of G with end vertices u and v. Let G - e be the graph obtained by deleting the edge e from G. Prove that every vertex x of G - e is connected to either u or v by a path in G - e. (Hint: choose a path from x to u in G.)

Since G is connected, x is joined to u by a path $P = v_0 e_1 v_1 \dots e_m v_m$ in G (where $x = v_0$ and $u = v_m$). If $e \notin E(P)$ then P is a path joining x to u in

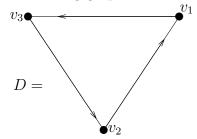
G-e. On the other hand, if $e \in E(P)$ then $e=e_m$ and hence $v_{m-1}=v$. Thus $P'=P=v_0e_1v_1\ldots e_{m-1}v_{m-1}$ is a path from x to v in G-e.

Deduce that, if e is a bridge of G, then G - e has exactly two connected components, G_1, G_2 , with u in G_1 and v in G_2 .

By the above, every vertex of G-e belongs to the same connected component of G-e as either u or v. Since G-e is disconnected, it follows that G-e has exactly two components, each containing either u or v.

(b) Is it true that if D is a strongly connected digraph and e is an arc of D, then D-e has at most two strongly connected components? Give a proof or counterexample.

It is false. The following graph D is a counterexample.



D is strongly connected and D-e has three strongly connected components for all arcs e of D.

Q4(a) Let D be a digraph with no directed cycles. Prove that D contains a vertex u with $d^-(u) = 0$ and a vertex v with $d^+(v) = 0$. (Hint: choose a longest path in D.)

Let $P = v_0 e_1 v_1 \dots e_m v_m$ be a directed path of maximum length in D. There are no arcs in D from any vertex of V(T) - V(P) to v_0 since otherwise we could extend P. There are no arcs in D from any vertex of V(P) to v_0 since otherwise we would obtain a directed cycle in D. Thus $d_D^-(v_0) = 0$. Similarly, $d_D^+(v_m) = 0$.

(b) Prove that the edges of every loopless graph can be directed in such a way that the resulting digraph has no directed cycles. (Hint: experiment with some small graphs.)

Let G be a graph. Draw G in the plane with all its vertices on a horizontal line and direct all edges from left to right. The resulting digraph D can have no directed cycles since every directed walk with at least one arc must move continuously towards the right so cannot return to its first vertex.