
MAS210 Graph Theory Exercises 6

Hand in to BLUE BOX on the GROUND FLOOR of math sci building before 4:30pm on Friday 9/3/07.

Q1 Consider the following graph G.

Find a maximum matching in G and a minimum cover of G. Justify the facts that your matching is maximum and your cover is minimum. [30]

Q2 The complete graph K_n is the graph with n vertices in which each vertex is joined to every other vertex by an edge. The complete bipartite graph $K_{m,n}$ is the graph with vertices partitioned into two sets X, Y where |X| = m, |Y| = n, and in which each vertex of X is joined to every vertex of Y by an edge.

- (a) Draw K_4 , K_5 , $K_{3,3}$, and $K_{3,4}$.
- (b) Determine $match(K_n)$, $cov(K_n)$, $match(K_{m,n})$, and $cov(K_{m,n})$ for all integers $1 \le m \le n$. Justify your answers. [40]
- Q3 (a) Write down the iterative step in Dijkstra's algorithm.
- (b) Prove that the time taken by the (i+1)'th iteration of Dijkstra's algorithm applied to a network N is $O(|V(N)| + d_N(x_{i+1}))$, assuming that all elementary arithmetic operations can be performed in constant time no matter how large the numbers involved are.
- (c) Deduce that, under the same assumption, the total time taken when Dijkstra's algorithm is run on N is $O(|V(N)|^2 + |(E(N)|)$. Hence, deduce that Dijkstra's algorithm is strongly polynomial. [30]