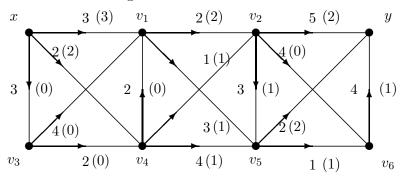
MAS210 Graph Theory Exercises 5

Hand in to BLUE BOX on the GROUND FLOOR of math sci building before 4:30pm on Friday 23/2/07.

Q1 Consider the following directed network N.



The numbers in brackets define an xy-flow f_1 in N. The numbers not in brackets define the capacities of the arcs of N.

- (a) Determine the value of f_1 .
- (b) Grow a maximal f_1 -unsaturated tree T_1 rooted at x and use T_1 to construct an xy-flow f_2 in x with $val(f_2) > val(f_1)$.
- (c) Grow a maximal f_2 -unsaturated tree T_2 rooted at x and use T_2 to construct a set $U \subset V(N)$ with $x \in U$, $y \in V(N) U$ and $c^+(U) = val(f_2)$. Explain why this equality implies that f_2 is an xy-flow of maximum value in N and $A_N^+(U)$ is an xy-arc cut of minimum capacity. [30]
- Q2 Let N be a directed network, $x, y \in V(N)$, and let f be an xy-flow in N. Suppose that P is an f-unsaturated path from x to y in N. Define $g: A(N) \to \mathbb{Z}$ by

$$g(e) = \begin{cases} f(e) & \text{if } e \notin A(P) \\ f(e) + 1 & \text{if } e \text{ is a forward arc of } P \\ f(e) - 1 & \text{if } e \text{ is a backward arc of } P \end{cases}$$

Prove that g is an xy-flow in N and that val(g) = val(f) + 1. [15]

Q3 Let N be a directed network, $x, y \in V(N)$, and let f be an xy-flow in N of maximum value. Let U be the set of all vertices which can be reached from x by f-unsaturated paths. Prove that:

- (a) $y \notin U$.
- (b) All arcs $e \in A_N^+(U)$ satisfy f(e) = c(e) and all arcs $e \in A_N^-(U)$ satisfy f(e) = 0.

(c)
$$val(f) = c^{+}(U)$$
. [20]

TURNOVER

- Q4 Let D be a digraph and $x, y \in V(D)$. Suppose that $d_D^+(v) = d_D^-(v)$ for all $v \in V(D) \{x, y\}$. Let $U \subset V(D)$ with $x \in U$ and $y \in V(D) U$. Let $d_D^+(U)$ be the number of arcs of D from U to V(D) U and $d_D^-(U)$ be the number of arcs of D from V(D) U to U.
- (a) Prove that $d_D^+(U) d_D^-(U) = d_D^+(x) d_D^-(x)$.
- (b) Deduce that if $d_D^+(x) > d_D^-(x)$ then there exists a directed path from x to y. Hint: Let U be the set of all vertices of N which can be reached from x by directed paths and use (a). [20]
- Q5 Let N be an acyclic directed network and $\{x_1, x_2, \ldots, x_n\}$ be an acyclic labeling of D.
- (a) Explain why the time that Moravék's algorithm takes to construct the out-arborescence T_i from the out-arborescence T_{i-1} is $O(d_N^-(x_i))$.
- (b) Deduce that the total time taken by running Moravék's algorithm to construct a spanning out-arborescence of N is O(|A(N)|). [15]