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SECTION A You should attempt all questions. Marks awarded are shown next to

the questions.

Question 1 Consider the following graph G.
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An implementation of the breadth first search algorithm produces the tree T6

with vertices x1 = v1, x2 = v2, x3 = v3, x4 = v7, x5 = v4, x6 = v8, and edges v1v2,
v1v3, v1v7, v2v4, v2v8 at the end of the sixth iteration. List the possible edge(s)
which could be added to T6 in the next iteration. Give a brief description of how
the algorithm chooses the edge(s). [5]

Question 2 Consider the following digraph D.
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(a) Construct an out-arborescence rooted at v3 which contains all vertices of D

which can be reached from v3 by directed walks.

(b) Construct an in-arborescence rooted at v3 which contains all vertices of D

which can reach v3 by directed walks.

(c) Use your solutions to (a) and (b) to determine the strongly connected compo-
nent of D which contains v3.

[15]
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Question 3 Consider the following network N .
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An implementation of Prim’s algorithm for finding a minimum weight spanning tree
of N produces the following tree T5 at the end of the fourth iteration: V (T5) =
{v1, v2, v3, v6, v11} and E(T5) = {v1v2, v2v3, v1v6, v6v11}. It also gives the vertex
labels shown in the following table.

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

x1 x2 x3 [x2, 3] [x2, 6] x4 [x5, 1] [x3, 4] [x4, 3] [x5, 2] x5

List the edge(s) of N which could be added to T5 in the next iteration and, for each
such edge, give a table showing the new vertex labels. [5]

Question 4 Determine whether the xy-flow given in the following directed network
has maximum value, giving a brief justification for your answer.
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Numbers in brackets denote the flow f1(e) along each arc e, numbers not in brackets
denote the capacity c(e) of each arc e.

[15]
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Question 5 Let G be the bipartite graph defined below.
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x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

Let M1 = {x2y2, x3y3, x5y5}. Use M1-alternating paths to construct a matching
M2 in G with |M2| = 4. [10]

Question 6 Let N be the network given below.
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Let W be a shortest v4v8-walk in N which traverses every edge of N at least
once. Suppose w(W ) = w(N) + m. Determine m and give a brief explanation of
how you would construct such a walk W . [10]
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SECTION B Each question carries 20 marks. You may attempt all questions. Ex-

cept for the award of a bare pass, only marks for the best 2 questions will be counted.

Question 7 (a) Dijkstra’s algorithm finds a spanning tree in a network N which
contains shortest paths from its root vertex v to all vertices of N by construct-
ing a sequence of trees T1, T2, . . . , Tn. Describe how the algorithm constructs
the next tree Ti+1 from the previous tree Ti. (You are not required to go into
the details of the vertex labelling procedure.)

(b) Let N be a network and Ti be a tree produced in the i’th iteration of Dijkstra’s
algorithm applied to N . Prove that the path in Ti from v to x is a shortest
path in N from v to x, for all x ∈ V (Ti).

Question 8 Let N be a directed network with no directed cycles.

(a) Explain what it means to say that a labelling x1, x2, . . . , xn of the vertices of
N is an acyclic labelling.

(b) Describe Moravék’s algorithm for constructing a spanning out-arborescence
rooted at x1 which contains longest paths from x1 to all vertices of N .

(c) Assuming that all arithmetic operations take constant time, prove that the
time taken in the i’th iteration when Moravék’s algorithm is applied to N

is O(d−N (xi)). Deduce that, under the same assumption, the time taken for
Moravék’s algorithm to construct a spanning out-arborescence of N is O(|A(N)|).

Question 9 Let N be a network obtained by assigning integer weights to the edges
of a complete bipatite graph Kn,n.

(a) Explain what it means for a map ` : V (N) → Z to be a feasible vertex labelling.

(b) Prove that if ` is a feasible vertex labelling of N and M is a perfect matching
of N then w(M) ≤

∑
v∈V (N) `(v).

(c) Prove that if M is a maximum weight perfect matching in N , then N has a
feasible vertex labelling ` such that w(M) =

∑
v∈V (N) `(v).
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