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You should attempt all Questions.
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Question 1 Consider the following graph G.

v U2

U3 V4

Us U6

U7 Us

An implementation of the breadth first search algorithm produces the tree T§
with vertices x1 = v1, T9 = v9, T3 = v3, T4 = V7, Ty = V4, Tg = Vg, and edges v1v2,
v1V3, V1V7, UaUy, VoUg at the end of the sixth iteration. List the possible edge(s)
which could be added to Ty in the next iteration. Give a brief description of how
the algorithm chooses the edge(s). [10]
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Question 2 Consider the following digraph D.

U1
(¥} )

() V3

U7 vy

V6 Us

Construct an out-arborescence rooted at vs which contains all vertices of D which
can be reached from vz by directed walks. [20]
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Question 3 Consider the following network N.

U1 1 U2 2

U3
) 3 6 7
2 S 2 % 4
N = Us 6 oo 3 U]
3 1 2
Vg 5 V11 2 U10

An implementation of Dijkstra’s algorithm for finding shortest paths in N start-
ing at v; produces the following tree T5 at the end of the fifth iteration: V(T5) =

{v1,v9,v3,v6,v7} and E(T5) = {v1ve, v1v6, v2v3, v2v7}. It also gives the vertex labels
shown in the following table.

v1 U2 U3 Vg Us Ve U7 U8 V9

V10 v11
Tr1 T2 T4 [I‘2,4] [$5,4] r3 Is [$5,6]

[$37 5] [xh OO] [ZL‘3,4]
List the edge(s) of N which could be added to T in the next iteration and, for ONE
such edge, give a table showing the new vertex labels.

[20]
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Question 4 Let IV be a directed network in which each edge has been given a non-
negative integer capacity, and z,y € V(INV). Explain what it means to say that a
map f: A(N) — Z is an zy-flow in N. [10]
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Question 5 Starting with the given flow fi, find an xy-flow of maximum value in
the following directed network IV, giving brief descriptions of the steps in your algo-
rithm. (You may define your maximum flow by updating the numbers in the figure
below).

x 3 (2) U1

Y

Vg

Numbers in brackets denote the flow f;(e) along each arc e, numbers not in brackets
denote the capacity c(e) of each arc e.

Justify the fact that the xy-flow you find has maximum value. [40]

© Queen Mary, University of London 2007 END OF EXAMINATION
6



