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6.2 ACF and PACF of ARMA(p,q)

6.21 ACF of ARMA(p,q)

In Section 4.6 we have derived the ACF for ARMA(1,1) procéd& have used
the linear process representation and the fact that

V) =02 Wiiber.
j=0

We have calculated the coefficients from the relation

w(B) = S0,

which (in case of ARMA(1,1)) gives the values

by = ¢ (01 + 61).
This allows us to calculate the ACF of the process

o) = 20

~ 7(0)

Another way of finding the coefficients is using the homogeneous difference
equations. However, we may obtain such equation directhgiims of~(7) or

p(7).
For ARMA(L,1)
Xe =0 Xe 1 =2+ 02,
we can write
v(71) = cov(Xigr, Xy)
= BE(X-Xy)
= E[(¢Xipr1 4+ Ziyr + 0214 7-1) X4
=E[pXir 1 Xe + 214 X + 0724471 XY
= ¢E[X 1 Xo) + E[Z, - Xy + 0E[Zy 471 X4

Here we consider a causal ARMA(1,1) process, hence

Xo=> Z;.
=0
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This gives

E[Zi - Xi| = E[Zs~ Z Vi Zi—j]
=0

WE

%‘ E[Zt+TZt—j]

<.
Il

o °

vo? forrT =0,
forr > 1.

{

EZr1 X)) = E[Zr1 Y05 Z)]
j=0

Also,

= Z Q/Jj E[ZtJrTletfj]
j=0

Po? for T =0,
= 1/}00'2 forr =1
0 for - > 2.

Furthermore,
Yo =1
Y=o+ 0.

Putting all these together we obtain

V(1) = $E[Xpyr 1 Xo] + E[Z14 Xo| + O E[Zy1 -1 X
oy(1) +o*(1+ ¢f + 6?) for 7 =0,
=< ¢7(0) + %0 for r =1,
oy(t —1) for 7 > 2.

The ACVF is in fact given here in the form of a homogeneousddihce equation
of order 1 with initial conditions specifying(0) and~(1). Namely, we have

Y(7) —¢y(t—=1)=0 (6.11)
and the initial conditions are
v(0) = ¢y(1) + (1 + 68 + 6?)
{ v(1) = ¢v(0) + 0?0 (6.12)

Note that the equation (6.11)

1) =dy(r 1)
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has an iterative form and we can write

() = ¢ (1)
The polynomial associated with the equation (6.11) is
1—¢z=0

with root ]
20 = 5
So we can write
Y(7) = (25) (D).
This depends only on the root of the associated polynomidl@anthe initial
conditions. Solving (6.12) foy(0) and~(1) we obtain

021+—29¢-+92

7(0) = =42
e (1+06)(6+0)
+ +
(1) =o” s
This gives us

2 (1+06)(6+0)
1— ¢

Finally dividing by~(0) we get the ACF, which is the same as the one derived in
Section 4.6, that is

ot forr > 1.

(1) =

(1+6¢)(¢+06)
1+ 206 + 02

p(T) = ot forr>1. (6.13)

ACF for ARMA(p,q)

Assume that the model
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Figure 6.1: ARMA(1,1) simulated process — 0.9x; 1 = z + 0.5z, Sample
ACF and the theoretical ACF of this process.
is causal, that is the roots of B) are outside the unit circle. Then we can write
Xt - ¢(B)Zt7

where .

W(B) =) ;B

j=0
and it follows immediately that(.X;) = 0.
As in the example for ARMA(1,1), we can obtain a homogenedtierdntial
equation in terms of(7) with some initial conditions. Namely
Y(1) = cov(Xiir, Xy)

=E [(Z 0 Xtyrj+ Zeth—l—T—j) Xt]

j=1 7=0

p q
= Z ¢j B[ X Xe] + Z 0; E[Z11r—; Xi]

j=1 Jj=0
P q
=Y dr =i+ 0 -
j=1 J=T

Here, as before, we used the linear representation othe fact that7,, ; and X,
are uncorrelated far> 0, ¢, = 0 for 7 < 0 and that, = 1.

This gives the general homogeneous difference equationfor

Y1) —p1y(t—1)— ... —¢pyy(T —p) =0 for 7 > max(p,q+1), (6.14)
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with initial conditions

V) =1yt =1)—. .. =y (T —p) = * (000 + 0, 11 +. . . +0,04—-) (6.15)

for0 <7 < max(p,q+1).

Example 6.4. ACF of an AR(2) process
Let
Xt — 01X 1 — 92Xy 0 =24

be a causal AR(2) process. From (6.14) we have
V(1) = dry(T—1) — doy(1 —2) =0 forr>2
with initial conditions
{ 7(0) = p1y(=1) — g2y (—2) = o7
Y(1) = $17(0) — gay(—1) =0

It is convenient to write these equations in terms of the @ut@lation function
p(7). Dividing them by~(0) we obtain

p(1) = d1p(r — 1) — gop(r —2) =0, forr >2

p0) =1 (6.16)

o(1) = - fl@

We know that a general solution to a second order differeqoaten is

p(1) =1z "+ czy”
wherez; andz, are the roots of the associated polynomial
P(z) =1— 12— ¢22’27
andc; andc, can be found from the initial conditions.
Take¢; = 0.7 and¢p, = —0.1, that is the AR(2) process is
X —0.7X,1 + 01X, 5 = Z,.

It is a causal process as the coefficients lie in the admesgatameter space.
Also, the roots of the associated polynomial

$p(z) =1—-0.72 4 0.12*
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Figure 6.2: AR(2) simulated process— 0.7z, 1 + 0.1x;,_5 = z;, sample ACF

and the theoretical ACF of this process.

arez; = 2 andz, = 5, i.e., they are outside the unit circle. The initial conufits

are
p(0) =1

p(1) = 2T

T
[

7

T 1401 11
They give the set of equations for andc,, namely

T
10

_ 5177'

clL+ ¢y = 1
1 n 1 7
—C+ -Cy = —
27 5711
These give
16 5
QL =-, Co=——=
T P
and finally we obtain the ACF for this AR(2) process
16 5 24-7
_= —2_7- — —_ 577 =
T =1 i’

Simulated AR(2) process, its sample ACF and the theore\€H are shown in
Figure 6.2. As we can see, the theoretical ACF decreaseklygtaowards zero,

but it never attains zero, we say it tails off.
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