Chapter 6
ARMA Models

6.1 ARMA Processes

In Section (4.6) we have introduced a special casey(terl andq = 1) of a very
general class of stationary TS models calfedoregressive Moving Average
(ARMA) Models. In this section we will consider this class of models for gyeh
values of the model ordegsandyg.

Definition 6.1. {X;} is an ARMA(p,q) process if{ X;} is stationary and if for
everyt,

Xt - ¢1Xt71 — ... Qﬁpthp = Zt + 91Zt71 + ...+ qutfqa (61)
where{Z;} ~ WN(0,0?) and the polynomials
d(z) =1— 1z —...— ¢p2’ (6.2)

and

0(z) =14+601z+...+ 6,27 (6.3)
have no common factors.
Remark6.1 The procesg X,} is said to be alRMA(p,q) process with mean
wif {X; — p}is an ARMA(p,q) process.

Remark6.2 If the polynomials (6.2) and (6.3) have no common factonsig@ans
that the model can not be reduced to a simpler one. If the palyals do have
common factors then there are redundant parameters whatessarily compli-
cates further analysis of the model. Then the model shousirbplified.

Using the backshift operator we can write the equation (€ohpisely as

¢(B)X; =0(B)Zi, (6.4)
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whereg(B) andd(B) are the regressive operator (polynomiaipand the mov-
ing average operator (polynomial ) of the form (6.2) and (6.3), respectively.
Note that wheny(B) = 1 then ARMA(p,q) is equivalent to MA(g) and when
0(B) = 1 then ARMA(p,q) is equivalent to AR(p). Such processes atenode-
noted as ARMA(0,q) and ARMA(p,0) to stress the fact that thevimg average
model and the autoregressive model are members of the ARM#elmndamily.

In Section (4.6) we discussed causality and invertibiltyARMA(1,1). These
two properties are related to the soluti&p of (6.4) being represented as a com-
bination of past noise values and the solutignof (6.4) being represented as a
combination of pask; variables, respectively.

6.1.1 Causality of ARMA(p,Qq)
We showed that the condition for stationarity of ARMA(1,1)
X, —o0Xe 1 =2, +07,_,, foreveryt,

is that
¢l # 1,
thatisl — ¢ # 0 or1 + ¢ # 0. This is equivalent to say that the polynomial

o(z) =1—¢z#0 for |z| = 1.
We have also derived the condition for causality of ARMA{1ythich is
6] < 1.
This condition can be viewed in terms of the solution to theatipn
d(z)=1—¢z2=0

whichisz = % and which should be bigger than 1 or smaller than -1.

Similar conditions, which are given in the following projgam, are put on ARMA(p,q).
Proposition 6.1. A stationary solutioq X, } of equation (6.4) exists if and only if
dz) =1—r1z—...— ¢z’ #0 forall |z] = 1.

The process is causal, that is there exist const@ntg such thad ~°  [¢;] < oo
and

Xe =Y i, (6.5)
=0
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if and only if
¢(z) =1—g1z—...— ¢,z =0 onlyfor|z| > 1.
Example6.1 Causality of AR(2)
For AR(1) process it is easy to establish the relation betvike causality con-
dition, |¢| < 1, and the roots of the polynomial— ¢z which areé. It is not
that easy to see the relation between the two, that is bettheeralues of the pa-
rametersp,, . . ., ¢, and the zeros of the polynomibt-¢, z—. . . —¢, 2 for largep.
For AR(2), which can be written as
(1—¢1B - ¢2BY)X, = Z,
to be causal we require that the roots of the polynomial
P(2) =1 — d1z — o2
lie outside the unit circléz| = 1. This requirement can be written as
b1 £/ D? + 4o
—2¢;

Remark6.3. Note that the causality conditions for AR(p) and ARMA(p,g@ ¢he
same.

The sequencéy; } in (6.5) can be derived from the relation (6.4), that is

> 1.

0(B)
= Zy = (B)Z;.
t ¢(B) t 7/1( ) t
That is
¢(B)¢(B) = 0(B). (6.6)
In terms of polynomials in we may write the identity
(I1—¢rz—...—p2")(Wo+t1z+...) =1+bz+ ... +6,2%
Equating the coefficients af , j = 0,1, ..., we obtain
1 =y
01 = 1 — Yodn

Oz = o — 11 — Y2

0 =15 — > oty i
k=1
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In the last expression we hadg= 1, 6; = 0 for j > ¢, andy; = 0 for j < 0.

Example6.2 Consider ARMA(2,1)
Xt - O.SXt,1 - O.lXt,Q = Zt + O.?)Zt,l.

We can see that the process is causal as the parameterngtbatisbnditions (6.6).
We can also check it by calculating the roots of the autossyve polynomial.
These are found by solving the equation

#(z) =1—-0.82 - 0.1z = 0.

The discriminant i\ = 0.8%2 +4 - 0.1 = 1.04 and the roots are

0.8 — VI1.04
== Y 1.09902
T o0
0.8+ v/1.04
— Y L 9.09902
27 T900)

The roots are outside the intervjat1, 1] and so the process is stationary and

causal. Its linear representation is given by (6.5), where
p
v =0;+ Y brtbjk.
k=1

For ARMA(2,1) the only nonzero coefficients and ¢ are ¢, ¢, and6;, also
p = 2. Hence, the coefficients are

o =1

P =0+ ¢

e = P11 + P2tbo
3 = P12 + Path
Yy = P13 + Patho
Vi = 11 + G202

Note that the set of the above equations can be written as

Py =1
P =01+ ¢
Y — d1pj1 — popj_o =0, forj > 1.
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The last equation
Y — 11 — P210j 2 =0 (6.7)
is so calledhomogeneous difference equation of order,2while the first two
equations
o =1
P =01+ ¢
are thenitial conditions.

The solution to the difference equation (6.8) depends osohgion to the asso-
ciated polynomial homogeneous equation

$(2) = 1 — hrz — o2® = 0. (6.8)
If there are two different roots; and z, of (6.9) then the general solution to
equation (6.8) is

by =z’ + e’ (6.9)
wherec; andc, depend on initial conditions. This can be verified by diredi-s
stitution of¢); into (6.8). The initial conditions can be calculated from

o =1+ ¢
Y = clzl_1 + cazy

When the roots are equal, = z;(= z;) the general solution to (6.8) is

1

V= 27 (€1 + c2f),
where the unknown coefficients andc, can be obtained from the initial condi-
tions and

o = ¢

wl = 2’0_1(01 + 02).
Here, in the example, we havg = 1 andy; = 6, + ¢; = 0.3+ 0.8 = 1.1 and
there are two distinct roots of (6.9). Hence, the initialditions are

c1+ Ccy = 1
izt ezt =11

wherez; = 1.099, 2z = —9.099. The solutions to these equations can then be
substituted in (6.10) to find values of the coefficients Here we obtain

¢ = 0.186388
¢y = 0.813612,
what gives

1
i =0.1 — 813612 -
;=0 863881'099] + 0.8136 90997
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6.1.2 Invertibility of ARMA(p,Qq)

This addresses the problem of uniqueness discussed iro®ek8.1 which is
related to the MA part of the ARMA model. We choose the modelktihas an
infinite autoregressive representation, i.e., is invegtamd can be written as

Z = G d(B) Xy = n(B)X, = ) mBIX, = ) mXi,
j=0 J=0

where) 7 [7;| < oo andm, = 1. Analogously to the causality condition given
in Proposition 6.1 we have the following

Proposition6.2 The ARMA(p,q) process is invertible, that is there exisstants
{m;} suchthaty >’  |r;| < oo and

Zy =Y mXi, (6.10)
j=0

if and only if
0(2) =14+60z+...4+0,22=0 onlyfor|z| > 1.

The coefficients; can be determined by solving

wherer(z) = 377 w27

Example6.3. Parameter Redundancy, Causality and Invertibility

Consider the process
Xe—04X, 1 — 045X o =21+ Zi 1+ 0.257; 5.
In the operator form it is
(1—04B —0.45B*)X; = (1 + B+ 0.25B*)Z,.
Is this really an ARMA(2,2) process?

We need to check if the polynomialgz) andf(z) have common factors. We
have
#(z) =1— 0.4z —0.452% = (1 +0.52)(1 — 0.92),
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and
0(z) =1+ 2+0.252% = (1 +0.52)%

Hence there is one common factar+ 0.5z) and the model can be simplified to
(1-09B)X; = (1+0.5B)Z,

or
Xt - 0'9Xt—1 - Zt "‘ 0'5Zt—1'

It means that in fact it is an ARMA(1,1) model and the paramsate andd, are
redundant. That's why in the definition of ARMA(p,q) we hauated that the
polynomials¢(z) andé(z) should not have common factors. Then there is no
parameter redundancy.

The model is causal because
¢(2) =1—-0.92=0 whenz=10/9,
which is outside the unit circle. The model is also invedibecause
0(z2) =1+0.52=0 whenz = -2,

which is outside the unit circle too.

To obtain a linear process form of the model we need to caletiee coefficients
;. It can be done from the relation (6.7), which gives the value

i =0;+ Y butbjk,
K1

wheref, =1, 6, = 0 for j > ¢, andy; = 0 for j < 0. This gives

o =0y =1

=601+ 1y =0, + ¢ =05+09=14
o = Ppr1ip1 = ¢1(61 + ¢1) =09 x 1.4

Vg = Priby = 5 (01 + ¢1) = 0.9° x 1.4

;=i = @0+ by) = 0.9 x 1.4,

Hence we can write

Xe=3"0Z ;= Z+ 14> 0977,
3=0 j=1
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Similarly, we can find the invertible representation of thed®al which is

Zy =) mX, ;=X — 14> (-05/7'X,_;.
=0

J=1



