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2.8 Matrix approach to simple linear regression

In this section we will briefly discuss a matrix approach to fitting simple linear
regression models. A random sample of sizen givesn equations. For the full
SLRM we have

Y1 = β0 + β1x1 + ε1

Y2 = β0 + β1x2 + ε2
...

...

Yn = β0 + β1xn + εn

We can write this in matrix formulation as

Y = Xβ + ε, (2.22)

whereY is an(n×1) vector of response variables (random sample),X is an(n×
2) matrix called thedesign matrix, β is a (2 × 1) vector of unknown parameters
andε is an(n× 1) vector of random errors. That is,

Y =




Y1

Y2

...
Yn


 , X =




1 x1

1 x2

...
...

1 xn


 , β =

(
β0

β1

)
, ε =




ε1
ε2
...
εn


 .

The assumptions about the random errors let us write

ε ∼ N n

(
0, σ2I

)
,

that is vectorε hasn-dimensional normal distribution with

E(ε) = E




ε1
ε2
...
εn


 =




E(ε1)
E(ε2)

...
E(εn)


 =




0
0
...
0


 = 0

and the variance-covariance matrix

Var(ε) =




var(ε1) cov(ε1, ε2) . . . cov(ε1, εn)
cov(ε2, ε1) var(ε2) . . . cov(ε2, εn)

...
...

. ..
...

cov(εn, ε1) cov(εn, ε2) . . . var(εn)




=




σ2 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σ2


 = σ2I
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This formulation is usually called theLinear Model (in β). All the models we
have considered so far can be written in this general form. The dimensions of
matrix X and of vectorβ depend on the numberp of parameters in the model
and, respectively, they aren× p andp× 1. In the full SLRM we havep = 2.

The null model (p = 1)

Yi = β0 + εi for i = 1, . . . , n

is equivalent to
Y = 1β0 + ε

where1 is an(n× 1) vector of 1’s.

The no-intercept model(p = 1)

Yi = β1xi + εi for i = 1, . . . , n

can be written as in matrix notation with

X =




x1

x2

...
xn


 , β =

(
β1

)
.

Quadratic regression(p = 3)

Yi = β0 + β1xi + β2x
2

i + εi for i = 1, . . . , n

can be written in matrix notation with

X =




1 x1 x2

1

1 x2 x2

2

...
...

...
1 xn x2

n


 , β =




β0

β1

β2


 .

�

The normal equations obtained in the least squares method are given by

XTY = XTXβ̂.
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It follows that so long asXTX is invertible, i.e., its determinant is non-zero, the
unique solution to the normal equations is given by

β̂ = (XTX)−1XTY .

This is a common formula for all linear models whereXTX is invertible. For the
full simple linear regression model we have

XTY =

(
1 1 · · · 1
x1 x2 · · · xn

)



Y1

Y2

...
Yn




=

( ∑
Yi

∑
xiYi

)
=

(
nȲ
∑

xiYi

)

and

XTX =

(
n

∑
xi∑

xi

∑
x2

i

)
=

(
n nx̄

nx̄
∑

x2

i

)
.

The determinant ofXTX is given by

|XTX | = n
∑

x2

i − (nx̄)2 = n
(∑

x2

i − nx̄2

)
= nSxx.

Hence, the inverse ofXTX is

(XTX)−1 =
1

nSxx

( ∑
x2

i −nx̄

−nx̄ n

)
=

1

Sxx

(
1

n

∑
x2

i −x̄

−x̄ 1

)
.

So the solution to the normal equations is given by

β̂ = (XTX)−1XTy

=
1

Sxx

(
1

n

∑
x2

i −x̄

−x̄ 1

)(
nȲ∑
xiYi

)

=
1

Sxx

(
Ȳ
∑

x2

i − x̄
∑

xiYi∑
xiYi − nx̄Ȳ

)

=
1

Sxx

(
Ȳ
∑

x2

i − nx̄2Ȳ + nx̄2Ȳ − x̄
∑

xiYi

SxY

)

=
1

Sxx

(
Ȳ (
∑

x2

i − nx̄2)− x̄(
∑

xiYi − nx̄Ȳ )
SxY

)

=
1

Sxx

(
Ȳ Sxx − x̄SxY

SxY

)

=

(
Ȳ − β̂1x̄

β̂1

)
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which is the same result as we obtained before.
�

Note:
Let A andB be a vector and a matrix of real constants and letZ be a vector of
random variables, all of appropriate dimensions so that theaddition and multipli-
cation are possible. Then

E(A+BZ) = A+B E(Z)

Var(A+BZ) = Var(BZ) = BVar(Z)BT.

In particular,
E(Y ) = E(Xβ + ε) = Xβ

Var(Y ) = Var(Xβ + ε) = Var(ε) = σ2I.

These equalities let us prove the following theorem.

Theorem 2.7. The least squares estimator β̂ of β is unbiased and its variance-
covariance matrix is

Var(β̂) = σ2(XTX)−1.

Proof. First we will show that̂β is unbiased. Here we have

E(β̂) = E{(XTX)−1XTY } = (XTX)−1XT E(Y )

= (XTX)−1XTXβ = Iβ = β.

Now, we will show the result for the variance-covariance matrix.

Var(β̂) = Var{(XTX)−1XTY }

= (XTX)−1XT Var(Y )X(XTX)−1

= σ2(XTX)−1XTIX(XTX)−1 = σ2(XTX)−1.

�

We denote the vector of residuals as

e = Y − Ŷ ,

whereŶ = Ê(Y ) = Xβ̂ is the vector of fitted responsesµ̂i. It can be shown that
the following theorem holds.
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Theorem 2.8.The n× 1 vector of residuals e has mean

E(e) = 0

and variance-covariance matrix

Var(e) = σ2
(
I −X(XTX)−1XT

)
.

�

Hence, variance of the residualsei is

var[ei] = σ2(1− hii),

where the leveragehii is theith diagonal element of theHat Matrix H = X(XTX)−1XT,
i.e.,

hii = xT

i (X
TX)−1xi,

wherexT

i = (1, xi) is theith row of matrixX.

Theith mean response can be written as

E(Yi) = µi = xT

i β = (1, xi)

(
β0

β1

)
= β0 + β1xi

and its estimator as
µ̂i = xT

i β̂.

Then, the variance of the estimator is

var(µ̂i) = var(xT

i β̂) = σ2xT

i (X
TX)−1xi = σ2hii

and the estimator of this variance is

v̂ar(µ̂i) = S2hii,

whereS2 is a suitable unbiased estimator ofσ2.

We can easily obtain other results we have seen for the SLRM written in non-
matrix notation, now using the matrix notation, both for thefull model and for a
reduced SLM (no intercept or zero slope).

We have seen on page 50 that

(XTX)−1 =
1

nSxx

( ∑
x2

i −nx̄

−nx̄ n

)
.
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Now, by Theorem 2.7,Var[β̂] = σ2(XTX)−1. Thus

var[β̂0] = σ2

∑
x2

i

nSxx

which, by writing
∑

x2 =
∑

x2 − nx̄2 + nx̄2, can be written asσ2

{
1

n
+ x̄2

Sxx

}
.

Also,

cov(β̂0, β̂1) = σ2

(
−nx̄

nSxx

)

=
−σ2x̄

Sxx

,

and

var[β̂1] =
σ2

Sxx

.

The quantityhii is given by

hii = xT

i (X
TX)−1xi

= (1 xi)
1

nSxx

( ∑
x2

j −nx̄

−nx̄ n

)(
1
xi

)
.

We shall leave it as an exercise to show that this simplifies to

hii =
1

n
+

(xi − x̄)2

Sxx

.

2.8.1 Some specific examples

1. The Null model

As we have seen, this can be written as

Y = Xβ0 + ε

whereX = 1 is an(n × 1) vector of 1’s. SoXTX = n, XTY =
∑

Yi,
which gives

β̂ = (XTX)−1XTY =
1

n

∑
Yi = Ȳ = β̂0,

var[β̂] = (XTX)−1σ2 =
σ2

n
.
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2. No-intercept model

We saw that this example fits the General Linear Model with

X =




x1

x2

...
xn


 , β = β1

SoXTX =
∑

x2

i andXTY =
∑

xiYi, and we can calculate

β̂ = (XTX)−1XTY =

∑
xiYi∑
x2

i

= β̂1,

Var[β̂] = σ2(XTX)−1 =
σ2

∑
x2

i

.


