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2.8 Matrix approach to simple linear regression

In this section we will briefly discuss a matrix approach torfg simple linear
regression models. A random sample of sizgivesn equations. For the full
SLRM we have

Yi = Bo+ Bz +ea
Yo = [o+ Bixe +e2

Yn - 60 + len + En
We can write this in matrix formulation as
Y = X3 +¢, (2.22)

whereY is an(n x 1) vector of response variables (random sampt)s an(n x
2) matrix called thedesign matrix, 3 is a(2 x 1) vector of unknown parameters
ande is an(n x 1) vector of random errors. That is,

Y1 1 T €1
Y = Y2 , X = b Cop=( ), e 7
: S Io :
Y, 1 z, En

The assumptions about the random errors let us write
e~N, (0,021) ,
that is vectoe hasn-dimensional normal distribution with

€1 E(Sl) 0
€ E(e 0
U I B O N R
En E(en) 0
and the variance-covariance matrix
var(e;)  cov(er,g2) ... cov(er,en)
cov(eq, e var(e ... cov(eg, Ep
Vartey = | ovene) varte (2220
cov(en,€1) cov(en, &) ... var(e,)
a2 0 ... 0
0 o2 ... 0 )
= S ) =01
0 0 ... o2




2.8. MATRIX APPROACH TO SIMPLE LINEAR REGRESSION 49

This formulation is usually called thieinear Model (in 8). All the models we
have considered so far can be written in this general forme dimensions of
matrix X and of vector3 depend on the numberof parameters in the model
and, respectively, they arex p andp x 1. In the full SLRM we have = 2.
The null model (p = 1)

Yi=0y+¢e fori=1....n

is equivalent to
Y = ].B() + €

wherel is an(n x 1) vector of 1's.
The no-intercept model(p = 1)
Y, =pz;i+¢e fori=1,...,n
can be written as in matrix notation with

|
X2

X = : Y ﬁ = ( /61 )'
Tn
Quadratic regression(p = 3)
Y; = Bo+ Bixi + fori+& fori=1,....n

can be written in matrix notation with

1z 22

1 2y 23 Fo
X = : : : ’ /8 = 61

1 =z, 22 &

The normal equations obtained in the least squares metkaghem by

Xy = xTx3B.
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It follows that so long asX " X is invertible, i.e., its determinant is non-zero, the
unique solution to the normal equations is given by

B=(X"X)"'X"Y.
This is a common formula for all linear models wheXé X is invertible. For the
full simple linear regression model we have

Y,
~ (1 1 -1 €
XY= (xl Ty 0 Tp :

Y,

B XY\ nY
a (Z%YZ>_<Z%Y;>

(g Fa )= (0 )

The determinant oX ' X is given by

IXTX| = anf —(nz)*=n (fo — ni’2> = NSy
Hence, the inverse oX ' X is
1 Sa? —nz 1 (1522 -7
T -1 _ 7 . n 1
(X7 X)™ = NSyp ( —nT n ) S, ( - 1)

So the solution to the normal equations is given by

and

~

B = (X'X)'Xy

1 L3 2} -k nY
YN 22 -z2Y 1Y )

Y S22 —nz?Y +nz?Y — 3> ;Y5 )

(

T S ( Say
(
(

YO 22 —nz?) — 23" 2;Y; — nzY) )
Say
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which is the same result as we obtained before. 0

Note:

Let A and B be a vector and a matrix of real constants anddie a vector of
random variables, all of appropriate dimensions so thaatitition and multipli-
cation are possible. Then

E(A+BZ)=A+ BE(Z)
Var(A+ BZ) = Var(BZ) = BVar(Z)B".
In particular,
EY)=E(XB+¢)=Xp
Var(Y) = Var(X3 + €) = Var(e) = 0°1.
These equalities let us prove the following theorem.
Theorem 2.7. The least squares estimator B of 3 is unbiased and its variance-

covariance matrixis
Var(B) = o?( X X)L,

Proof. First we will show thai3 is unbiased. Here we have
E(B) = E{(X"X)"' XY} = (X"X) 'XTE(Y)
= (X'"X)'XTXB=18=0.
Now, we will show the result for the variance-covariancenmat
Var(8) = Var{(X"X)' XTY}

= (XTX)' X" Var(Y) X (X' X)™!
= XTX)'XTIX(XTX) ' =o*(XTX)™ L.

We denote the vector of residuals as

A~

e=Y-Y,

whereY = /(17) — X3 is the vector of fitted responsgs It can be shown that
the following theorem holds.
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Theorem 2.8. Then x 1 vector of residuals e has mean
E(e)=0
and variance-covariance matrix

Var(e) = o*(I - X(X'X)'X").

Hence, variance of the residualss
var[e;] = 02(1 — hii),

where the leveragl; is theith diagonal element of théat Matrix H = X (X' X) ' X7,
Le.,
hii = w;F(XTX)_lwi,

wherez] = (1, ;) is theith row of matrix X .

Thesth mean response can be written as

E(Y;) = pi = w?ﬁ = (1, 2) ( g(l) ) = Bo + Bix;

and its estimator as

~

i =z B.
Then, the variance of the estimator is

var(1i;) = var(z! 8) = o2&l (XTX) ', = o2hy
and the estimator of this variance is
var(fi) = S2h;,
whereS? is a suitable unbiased estimatoregt

We can easily obtain other results we have seen for the SLRikewrin non-
matrix notation, now using the matrix notation, both for fo# model and for a
reduced SLM (no intercept or zero slope).

We have seen on page 50 that

(XTX)! = 1 ( Sa? —nx )

nSy, \ —NT N
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Now, by Theorem 2.7yar[3] = ¢2(X " X)~'. Thus

2 :Uzzxf

var[ | Y

i iti 2 _ 2 72 72 i 2)1 z?
which, by writing>_ 2* = " 2* — nz* 4+ nz*, can be written as {5 + S—I}
Also,

cov(o ) = o (‘”)

nSzz
B —0?z
B SJ?J? 7
and
~ 0'2
varlBi] = -
The quantityh,; is given by
hi = =) (XTX) 'ay

- (Z2 (L)

We shall leave it as an exercise to show that this simplifies to

1 (l’Z — i’)2
hiy=—+—g——
n + S

2.8.1 Some specific examples

1. The Null model
As we have seen, this can be written as

Y:Xﬁo‘l—é'

whereX = 1isan(n x 1) vector of 1's. SaX*' X = n, XY =Y Y,,
which gives

~ 1 _ ~
B=(X"X)'XTY =-) YVi=Y =,

var[8] = (XTX) o = %2.



54 CHAPTER 2. SIMPLE LINEAR REGRESSION

2. No-intercept model
We saw that this example fits the General Linear Model with

SoX'X =Y z?andX'Y =Y x,Y;, and we can calculate

~ _ szY; ~
I@:(XTX) IXTY: sz :Bla

0.2

2y

Var[8] = o*(XTX)™ =




