2.8 Matrix approach to simple linear regression

In this section we will briefly discuss a matrix approach to fitting simple linear regression models. A random sample of size n gives n equations. For the full SLRM we have

$$
\begin{array}{rcc}
Y_{1} & =\beta_{0}+\beta_{1} x_{1}+\varepsilon_{1} \\
Y_{2} & =\beta_{0}+\beta_{1} x_{2}+\varepsilon_{2} \\
\vdots & \vdots \\
Y_{n} & = & \beta_{0}+\beta_{1} x_{n}+\varepsilon_{n}
\end{array}
$$

We can write this in matrix formulation as

$$
\begin{equation*}
\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon} \tag{2.22}
\end{equation*}
$$

where \boldsymbol{Y} is an $(n \times 1)$ vector of response variables (random sample), \boldsymbol{X} is an $(n \times$ 2) matrix called the design matrix, $\boldsymbol{\beta}$ is a (2×1) vector of unknown parameters and ε is an $(n \times 1)$ vector of random errors. That is,

$$
\boldsymbol{Y}=\left(\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right), \quad \boldsymbol{X}=\left(\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right), \quad \boldsymbol{\beta}=\binom{\beta_{0}}{\beta_{1}}, \quad \boldsymbol{\varepsilon}=\left(\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\vdots \\
\varepsilon_{n}
\end{array}\right)
$$

The assumptions about the random errors let us write

$$
\varepsilon \sim \mathcal{N}_{n}\left(\mathbf{0}, \sigma^{2} \boldsymbol{I}\right)
$$

that is vector ε has n-dimensional normal distribution with

$$
\mathrm{E}(\boldsymbol{\varepsilon})=\mathrm{E}\left(\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\vdots \\
\varepsilon_{n}
\end{array}\right)=\left(\begin{array}{c}
\mathrm{E}\left(\varepsilon_{1}\right) \\
\mathrm{E}\left(\varepsilon_{2}\right) \\
\vdots \\
\mathrm{E}\left(\varepsilon_{n}\right)
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)=\mathbf{0}
$$

and the variance-covariance matrix

$$
\begin{aligned}
\operatorname{Var}(\boldsymbol{\varepsilon}) & =\left(\begin{array}{cccc}
\operatorname{var}\left(\varepsilon_{1}\right) & \operatorname{cov}\left(\varepsilon_{1}, \varepsilon_{2}\right) & \ldots & \operatorname{cov}\left(\varepsilon_{1}, \varepsilon_{n}\right) \\
\operatorname{cov}\left(\varepsilon_{2}, \varepsilon_{1}\right) & \operatorname{var}\left(\varepsilon_{2}\right) & \ldots & \operatorname{cov}\left(\varepsilon_{2}, \varepsilon_{n}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\operatorname{cov}\left(\varepsilon_{n}, \varepsilon_{1}\right) & \operatorname{cov}\left(\varepsilon_{n}, \varepsilon_{2}\right) & \ldots & \operatorname{var}\left(\varepsilon_{n}\right)
\end{array}\right) \\
& =\left(\begin{array}{cccc}
\sigma^{2} & 0 & \ldots & 0 \\
0 & \sigma^{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \sigma^{2}
\end{array}\right)=\sigma^{2} \boldsymbol{I}
\end{aligned}
$$

This formulation is usually called the Linear Model (in $\boldsymbol{\beta}$). All the models we have considered so far can be written in this general form. The dimensions of matrix \boldsymbol{X} and of vector $\boldsymbol{\beta}$ depend on the number p of parameters in the model and, respectively, they are $n \times p$ and $p \times 1$. In the full SLRM we have $p=2$.

The null model $(p=1)$

$$
Y_{i}=\beta_{0}+\varepsilon_{i} \text { for } i=1, \ldots, n
$$

is equivalent to

$$
\boldsymbol{Y}=1 \beta_{0}+\varepsilon
$$

where $\mathbf{1}$ is an $(n \times 1)$ vector of 1 's.
The no-intercept model ($p=1$)

$$
Y_{i}=\beta_{1} x_{i}+\varepsilon_{i} \text { for } i=1, \ldots, n
$$

can be written as in matrix notation with

$$
\boldsymbol{X}=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right), \quad \boldsymbol{\beta}=\left(\beta_{1}\right)
$$

Quadratic regression ($p=3$)

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i}+\beta_{2} x_{i}^{2}+\varepsilon_{i} \text { for } i=1, \ldots, n
$$

can be written in matrix notation with

$$
\boldsymbol{X}=\left(\begin{array}{ccc}
1 & x_{1} & x_{1}^{2} \\
1 & x_{2} & x_{2}^{2} \\
\vdots & \vdots & \vdots \\
1 & x_{n} & x_{n}^{2}
\end{array}\right), \quad \boldsymbol{\beta}=\left(\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\beta_{2}
\end{array}\right)
$$

The normal equations obtained in the least squares method are given by

$$
\boldsymbol{X}^{\mathrm{T}} \boldsymbol{Y}=\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} \widehat{\boldsymbol{\beta}}
$$

It follows that so long as $\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}$ is invertible, i.e., its determinant is non-zero, the unique solution to the normal equations is given by

$$
\widehat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{Y}
$$

This is a common formula for all linear models where $\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}$ is invertible. For the full simple linear regression model we have

$$
\begin{aligned}
\boldsymbol{X}^{\mathrm{T}} \boldsymbol{Y} & =\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right)\left(\begin{array}{c}
Y_{1} \\
Y_{2} \\
\vdots \\
Y_{n}
\end{array}\right) \\
& =\binom{\sum Y_{i}}{\sum x_{i} Y_{i}}=\binom{n \bar{Y}}{\sum x_{i} Y_{i}}
\end{aligned}
$$

and

$$
\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}=\left(\begin{array}{cc}
n & \sum x_{i} \\
\sum x_{i} & \sum x_{i}^{2}
\end{array}\right)=\left(\begin{array}{cc}
n & n \bar{x} \\
n \bar{x} & \sum x_{i}^{2}
\end{array}\right) .
$$

The determinant of $\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}$ is given by

$$
\left|\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right|=n \sum x_{i}^{2}-(n \bar{x})^{2}=n\left(\sum x_{i}^{2}-n \bar{x}^{2}\right)=n S_{x x}
$$

Hence, the inverse of $\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}$ is

$$
\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right)^{-1}=\frac{1}{n S_{x x}}\left(\begin{array}{cc}
\sum x_{i}^{2} & -n \bar{x} \\
-n \bar{x} & n
\end{array}\right)=\frac{1}{S_{x x}}\left(\begin{array}{cc}
\frac{1}{n} \sum x_{i}^{2} & -\bar{x} \\
-\bar{x} & 1
\end{array}\right) .
$$

So the solution to the normal equations is given by

$$
\begin{aligned}
\widehat{\boldsymbol{\beta}} & =\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\mathrm{T}} y \\
& =\frac{1}{S_{x x}}\left(\begin{array}{c}
\frac{1}{n} \sum x_{i}^{2} \\
-\bar{x} \\
-\bar{x}
\end{array}\right)\binom{n \bar{Y}}{\sum x_{i} Y_{i}} \\
& =\frac{1}{S_{x x}}\binom{\bar{Y} \sum_{i} x_{i}^{2}-\bar{x} \sum x_{i} Y_{i}}{\sum x_{i} Y_{i}-n \bar{x} \bar{Y}} \\
& =\frac{1}{S_{x x}}\binom{\bar{Y} \sum x_{i}^{2}-n \bar{x}^{2} \bar{Y}+n \bar{x}^{2} \bar{Y}-\bar{x} \sum x_{i} Y_{i}}{S_{x Y}} \\
& =\frac{1}{S_{x x}}\binom{\bar{Y}\left(\sum x_{i}^{2}-n \bar{x}^{2}\right)-\bar{x}\left(\sum x_{i} Y_{i}-n \bar{x} \bar{Y}\right)}{S_{x Y}} \\
& =\frac{1}{S_{x x}}\binom{\bar{Y} S_{x x}-\bar{x} S_{x Y}}{S_{x Y}} \\
& =\binom{\bar{Y}-\widehat{\beta_{1}} \bar{x}}{\widehat{\beta_{1}}}
\end{aligned}
$$

which is the same result as we obtained before.

Note:
Let \boldsymbol{A} and \boldsymbol{B} be a vector and a matrix of real constants and let \boldsymbol{Z} be a vector of random variables, all of appropriate dimensions so that the addition and multiplication are possible. Then

$$
\begin{aligned}
& \mathrm{E}(\boldsymbol{A}+\boldsymbol{B} \boldsymbol{Z})=\boldsymbol{A}+\boldsymbol{B} \mathrm{E}(\boldsymbol{Z}) \\
& \operatorname{Var}(\boldsymbol{A}+\boldsymbol{B} \boldsymbol{Z})=\operatorname{Var}(\boldsymbol{B} \boldsymbol{Z})=\boldsymbol{B} \operatorname{Var}(\boldsymbol{Z}) \boldsymbol{B}^{\mathrm{T}}
\end{aligned}
$$

In particular,

$$
\begin{aligned}
& \mathrm{E}(\boldsymbol{Y})=\mathrm{E}(\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon})=\boldsymbol{X} \boldsymbol{\beta} \\
& \operatorname{Var}(\boldsymbol{Y})=\operatorname{Var}(\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon})=\operatorname{Var}(\boldsymbol{\varepsilon})=\sigma^{2} \boldsymbol{I} .
\end{aligned}
$$

These equalities let us prove the following theorem.
Theorem 2.7. The least squares estimator $\widehat{\boldsymbol{\beta}}$ of $\boldsymbol{\beta}$ is unbiased and its variancecovariance matrix is

$$
\operatorname{Var}(\widehat{\boldsymbol{\beta}})=\sigma^{2}\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right)^{-1}
$$

Proof. First we will show that $\widehat{\boldsymbol{\beta}}$ is unbiased. Here we have

$$
\begin{aligned}
\mathrm{E}(\widehat{\boldsymbol{\beta}}) & =\mathrm{E}\left\{\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{Y}\right\}=\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\mathrm{T}} \mathrm{E}(\boldsymbol{Y}) \\
& =\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} \boldsymbol{\beta}=\boldsymbol{I} \boldsymbol{\beta}=\boldsymbol{\beta}
\end{aligned}
$$

Now, we will show the result for the variance-covariance matrix.

$$
\begin{aligned}
\operatorname{Var}(\widehat{\boldsymbol{\beta}}) & =\operatorname{Var}\left\{\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{Y}\right\} \\
& =\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\mathrm{T}} \operatorname{Var}(\boldsymbol{Y}) \boldsymbol{X}\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right)^{-1} \\
& =\sigma^{2}\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{I} \boldsymbol{X}\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right)^{-1}=\sigma^{2}\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right)^{-1} .
\end{aligned}
$$

We denote the vector of residuals as

$$
e=\boldsymbol{Y}-\widehat{\boldsymbol{Y}},
$$

where $\widehat{\boldsymbol{Y}}=\widehat{\mathrm{E}(\boldsymbol{Y})}=\boldsymbol{X} \widehat{\boldsymbol{\beta}}$ is the vector of fitted responses $\widehat{\mu}_{i}$. It can be shown that the following theorem holds.

Theorem 2.8. The $n \times 1$ vector of residuals \boldsymbol{e} has mean

$$
E(\boldsymbol{e})=0
$$

and variance-covariance matrix

$$
\operatorname{Var}(\boldsymbol{e})=\sigma^{2}\left(\boldsymbol{I}-\boldsymbol{X}\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\mathrm{T}}\right)
$$

Hence, variance of the residuals e_{i} is

$$
\operatorname{var}\left[e_{i}\right]=\sigma^{2}\left(1-h_{i i}\right)
$$

where the leverage $h_{i i}$ is the i th diagonal element of the Hat Matrix $\boldsymbol{H}=\boldsymbol{X}\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\mathrm{T}}$, i.e.,

$$
h_{i i}=\boldsymbol{x}_{i}^{\mathrm{T}}\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right)^{-1} \boldsymbol{x}_{i},
$$

where $\boldsymbol{x}_{i}^{\mathrm{T}}=\left(1, x_{i}\right)$ is the i th row of matrix \boldsymbol{X}.
The i th mean response can be written as

$$
\mathrm{E}\left(Y_{i}\right)=\mu_{i}=\boldsymbol{x}_{i}^{\mathrm{T}} \boldsymbol{\beta}=\left(1, x_{i}\right)\binom{\beta_{0}}{\beta_{1}}=\beta_{0}+\beta_{1} x_{i}
$$

and its estimator as

$$
\widehat{\mu}_{i}=\boldsymbol{x}_{i}^{\mathrm{T}} \widehat{\boldsymbol{\beta}}
$$

Then, the variance of the estimator is

$$
\operatorname{var}\left(\widehat{\mu}_{i}\right)=\operatorname{var}\left(\boldsymbol{x}_{i}^{\mathrm{T}} \widehat{\boldsymbol{\beta}}\right)=\sigma^{2} \boldsymbol{x}_{i}^{\mathrm{T}}\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right)^{-1} \boldsymbol{x}_{i}=\sigma^{2} h_{i i}
$$

and the estimator of this variance is

$$
\widehat{\operatorname{var}\left(\widehat{\mu}_{i}\right)}=S^{2} h_{i i},
$$

where S^{2} is a suitable unbiased estimator of σ^{2}.
We can easily obtain other results we have seen for the SLRM written in nonmatrix notation, now using the matrix notation, both for the full model and for a reduced SLM (no intercept or zero slope).

We have seen on page 50 that

$$
\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right)^{-1}=\frac{1}{n S_{x x}}\left(\begin{array}{cc}
\sum x_{i}^{2} & -n \bar{x} \\
-n \bar{x} & n
\end{array}\right)
$$

Now, by Theorem 2.7, $\operatorname{Var}[\widehat{\boldsymbol{\beta}}]=\sigma^{2}\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right)^{-1}$. Thus

$$
\operatorname{var}\left[\widehat{\beta}_{0}\right]=\sigma^{2} \frac{\sum x_{i}^{2}}{n S_{x x}}
$$

which, by writing $\sum x^{2}=\sum x^{2}-n \bar{x}^{2}+n \bar{x}^{2}$, can be written as $\sigma^{2}\left\{\frac{1}{n}+\frac{\bar{x}^{2}}{S_{x x}}\right\}$. Also,

$$
\begin{aligned}
\operatorname{cov}\left(\widehat{\beta}_{0}, \widehat{\beta}_{1}\right) & =\sigma^{2}\left(\frac{-n \bar{x}}{n S_{x x}}\right) \\
& =\frac{-\sigma^{2} \bar{x}}{S_{x x}},
\end{aligned}
$$

and

$$
\operatorname{var}\left[\widehat{\beta}_{1}\right]=\frac{\sigma^{2}}{S_{x x}}
$$

The quantity $h_{i i}$ is given by

$$
\begin{aligned}
h_{i i} & =\boldsymbol{x}_{i}^{\mathrm{T}}\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right)^{-1} \boldsymbol{x}_{i} \\
& =\left(1 x_{i}\right) \frac{1}{n S_{x x}}\left(\begin{array}{cc}
\sum x_{j}^{2} & -n \bar{x} \\
-n \bar{x} & n
\end{array}\right)\binom{1}{x_{i}} .
\end{aligned}
$$

We shall leave it as an exercise to show that this simplifies to

$$
h_{i i}=\frac{1}{n}+\frac{\left(x_{i}-\bar{x}\right)^{2}}{S_{x x}} .
$$

2.8.1 Some specific examples

1. The Null model

As we have seen, this can be written as

$$
\boldsymbol{Y}=\boldsymbol{X} \beta_{0}+\varepsilon
$$

where $\boldsymbol{X}=1$ is an $(n \times 1)$ vector of 1 's. So $\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}=n, \boldsymbol{X}^{\mathrm{T}} \boldsymbol{Y}=\sum Y_{i}$, which gives

$$
\begin{gathered}
\widehat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{Y}=\frac{1}{n} \sum Y_{i}=\bar{Y}=\widehat{\beta}_{0}, \\
\operatorname{var}[\widehat{\boldsymbol{\beta}}]=\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right)^{-1} \sigma^{2}=\frac{\sigma^{2}}{n} .
\end{gathered}
$$

2. No-intercept model

We saw that this example fits the General Linear Model with

$$
\boldsymbol{X}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], \quad \boldsymbol{\beta}=\beta_{1}
$$

So $\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}=\sum x_{i}^{2}$ and $\boldsymbol{X}^{\mathrm{T}} \boldsymbol{Y}=\sum x_{i} Y_{i}$, and we can calculate

$$
\begin{gathered}
\widehat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{Y}=\frac{\sum x_{i} Y_{i}}{\sum x_{i}^{2}}=\widehat{\beta}_{1}, \\
\operatorname{Var}[\widehat{\boldsymbol{\beta}}]=\sigma^{2}\left(\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right)^{-1}=\frac{\sigma^{2}}{\sum x_{i}^{2}} .
\end{gathered}
$$

