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MODEL

We consider anonlinear regressiomodel

Yy = 77<t7(9> T €,

where

t €T =0, tnal] tmee < 00, denotes an explanatory variable,
# € © ap-dimensional vector of unknown parameters,

© aset of admissible values 6f

n(t,0) the expected responsetat

e arandom error of observations.



There is a population aV individuals for each of whicl,; measurements are gathered.

The model for each observation can be written as

g =t o ek, =1, n k=1,...,N

7771
where
y¥ is an observation at timg¢ ¢ T,

ek arei.i.d. random errors with a known densftyE(eF) = 0, var(el) = o2

]

We assume that the parameter vectyrare random, and that

E@f) =6  Var(0)) = diag{o?, ... o,

Efficient estimation of the population parameter vector

2 2 _ONT
Y= (01,...,0,0%,...,0,,0)

IS our primary interest.



EXPERIMENTAL DESIGN

We assume that the population@fpatients consists af groups;

all individuals in the same group follow the same schedule of measurements (cesign).
We construct the population experimental design in two stdges:

Individual level

j j 55
ot .

=4 Ch wle(0,1], ) wl=1
wl ... wl, P

The whole experimental system per individual is described by thggair; ),

wheren; is the number of observations per individual.



Population level

We define the population design as

G
¢ = { (51,?11) (fG;nG)}; Z&jzla

03] aa

whereq; is the proportion of individuals in the whole population who follow plann;).



FISHER INFORMATION MATRIX

The assumption of independent observations allows us to sum up the FIMs for all singls

observations.

G 5
NZO@ (&,n;) = NZozjnjzj:wa t!
j=1 i=1

jy _ ULy
- -22600)

is the elementary FIM for the observation made at time instaand
(wly)) = oz [ (s 10)h(6: ) do.

g(y|0) is the conditional probability density gfgivend,

h(0;1) is the probability density of.

where




PROBLEM FORMULATION

The design problem here is to optimize a functiofiadperating onM, a set of FIMs:
vV M-—"R or VIM((,N)] — min.

We look for a desigr™ which gives the optimum FIM for some initially chosen values

of the population parameters.

Here, we make the following assumptions:

1.7 is compact,
2. M (t) is continuous orT’,
3. VU is convex,

4.1f My < Mo, thenU(M;) > U(My).
L



We constrain the total number of observations to be not greater¥ftan
G

NZO&jﬂj S No.

7=1
In general:

G
NZO&jC(fj,TL]’) S C(),

J=1

wherec({;, n,) is a nonnegative cost functio@ is the total cost

If NV has to be estimated, it is convenient to allow it to take any positive real value.

Then, the optimal solutiof*, N*) satisfies the cost constraint on the boundary, i.e., the

iInequality becomes an equality @t, N*).



Further, we introduce the so-calladerage per total coghormalized) FIM:

N s @
M(v) = o D aje(mg) Y wlM(t]) =) BiM(E),
j=1 i=1 j=1

where .
N J
ﬁj — 5004]6<§]7 n]) ) M(€]) — sz]M(tb
1=1
and
&1 &a ¢
vV = ) ﬁ S (07 1]7 6 —
{ B ... Ba } : ; ]

Instead of minimizingV (M ((, N)) subject to the cost constraints we can equivalently

minimize ¥ (v) subject tozg’;l B =1.



However, due to the independence of all the observations the average FIM may be rewri

ten in the form

=35 et m e = 33 M)

7=1 1=1 j=1 =1

;i (fj,n])w = Gy ; ZZ%_l

g=1 =1

where

M (v) can also be written as
= wM(t) = M(w),
k=1

wherev, ..., v, are the sums oﬁ"s for the repeated time instants.
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The design

Is called aglobal design

Note
e Such a reformulation simplifies the problem of finding the two level hierarchical op-
timal population design to that of finding the equivalent one level design.
e It significantly reduced the problem of dimensionality.

e The information about groups is includedqijﬁand S0 imy;. This information is later

recovered after an optimum desigrhas been found.
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NUMERICAL ALGORITHM

e Substantial difficulties in determining the population designs arises from the fact tha

they are not uniquel.

e The criterionV is most often strictly convex oW (=), and this guarantees that the

optimal FIM is unique!
e But this does not mean théat, N) — W|M ((, N)| is strictly convex in((, N).

e Multiple global solutiong(*, N*) may yield the same minimum value gt M ({, N)).
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The determination of a final solution can be achieved in three skeps:

Step 1.Solve the optimization problem:

w* = argmin V(M (w)).

WEZ

Step 2. Transformw* into an equivalent desigm* € T, which satisfies

v* = arg min V(M (v)).

veY

Step 3.Transformv* into an equivalent design paid*, N*).

13



In Step 2we allow zero weights and we solve the following system of equations:

( . .
Biw! —~) =0, i=1,...,s, j=1,...,G (sG nonlinear equations
¢SY w =1, j=1,...,G (G linear equations
\ Zle %j =5 Jj=1,...,s (s linear equations

There ares(G — 1) more variables than equatiohs.

Treatings(G — 1) variables;yf as nonnegative parameters the solution becomes simple:

5;22;9:1737 jzla"'an
w*=~/85 i=1,...,s j=1...,G,

1

These values are further useddtep 3
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The optimal values of the population parametefsn;, j = 1,...,G and N* can be

retrieved solving the system of equations:

)
N : :
—aic(EF,n;) =05, g=1,...,G (G nonlinear equations

) CO J 7 J 7
Zil a; = 1, (1 linear equation

\

Here we havé&ry + 1 equations (andG + 1 variables) which can be solved numerically

up toGG parameters.

For example, if the numbers of observations per individual in each grgupre known

then the optimal solution is

: Cy oy
N*=C / L= : =1,....G.
Gy T Ny T
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Two special forms of population designs which minimize/ (¢, N)] are the followingt

(1) one-group design

that is
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(i) one-point s-group design

s el W . s q; [t | s
C _{* *}1 N —C()ijlc(w;,nj), wj—{lj}, TL]>O, ]—1,...,8.

G o q

That is
D (3 RN (43 10 ) G
q q;

There are other possibilities, depending on what information we put into the reformulat-

Ing systems of equations.
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EXAMPLE: ONE-COMPARTMENT PK MODEL
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Model
Dk,

V(ke — k)

Yy = (e_ket — e_kat) + €,

wherek, and k. are the first-order absorption and elimination raiéss the apparent

volume of distribution and) is a known dosé.
The regression parametérs- (V, k., k.)' are independent and normally distribufed.

The initial values of the population parameters are:
P = (E(V)O, E(kq)", E(k.)°, var(V)°, var(k,)’, var(k.)?, var(e)’)*
— (100, 2.08,0.1155,0.3,0.3,0.03,0.15)"

We are looking for &-optimum population design

In time domain” = |0.25, 12|, for cost functiorn:(¢, n) = n andCy = 900.
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Figure 1: Variance of the response prediction.

Theglobal desigrfrom theStep 1of the algorithm is:

045 1.86 9.90
0.3334 0.3334 0.3333
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Relationships among the unknowns

S R
Vs o N

S AR P
Bi Bo -+ Bl 1l

(1) One group desigriG = 1

(@) In Step 2 ] )
0.3333

I'=[yl=0i1=033%4

0.3333

w wi wf
1 .2 G
Wy Wy Wy
1 2 G

1 1 1
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We have
NZO@Z@, Oz'—@& jZl,...,G.

] 9
n; Nnj

(b) Assumen; = 9, Cy = 900; then inStep 3we obtain:a =1, N = 100

with the final population design:

4 )

045 1.86  9.90
CF =4 0.3333 0.3334 0.33331 ) %: N*=100.
1

Here, for each patient we have to conduct exactly three measurements at each tin

Instant.
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(2) one-point 3-group population desigh= G = 3

(a) FromStep 2

0.3333 0.0 0.0
'=1 00 03334 00 |I= (= [0.3333 0.3334 0.3333} W =1
0.0 0.0 0.3333

(b) Assumen; = ny, = ng = 10, Cy = 900; then fromStep 3we have:

a=[= [0.3333 0.3334 0.3333} , N =90

and the final population design is:

0.45 710 1.86 710 9.90 710

I ((E R RUNCE SRUNCE SR U] SR
0.3333 0.3334 0.3333

Here, each group has 30 patients, each patient has 10 samples taken at the sa

time instant.
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(3) unstructured desigiiz = 3

(a)In Step 2the weights of the global design are randomly split into the required

number of groups and number of support points in individual group desegns,

0.2298 0.1036 0
['= 0 0.2089 0.1245] ,
0.1710 0.0855 0.0768

then

0.5733 0.2603 0
B = [0.4008 0.3979 0.2013} W= 0  0.5248 0.6184
0.4267 0.2149 0.3816

(b) Assumen; = ny = nz = 10, Cy = 900; then fromStep 3we have:

a=[0= [0.4008 0.3979 0.2013} , N =090.
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and the population design:

\

-

0.45  9.90
0.5733 0.4267

0.4008

1)

More realistic design:

]

\

0.45 9.90
0.6 04
0.4

0.45

1.86

0.2603 0.5248 0.2149

0.3979

1.86 9.90

0.5
0.4

25

0.2

1)

) (L

0.6184 0.3816

1.86 9.90
0.6 04
0.2

.86

9.90

0.2013

)

/

,  N* = 900




Efficiency:

det M (¢, N*)\ /°
E = — (.9984
¢ (det M (¢, N*))

Note:

e Large total number of measurements ensures small decrease of the efficienc

caused by rounding.

e However, the flexibility in constructing an optimal design allows us to reduce the

iInfluence of rounding on the efficiency of the final design.
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(4) unstructured desigiir = 3

(a) In Step 2we can set the elements of matfix to be appropriate ratios, e.g.

()
|co

0
W=10

—_
olw  ouno

Then we obtain
_ 0 0 0.1000_
I'= 0 0.1334 0.2333 and 3= 1{0.3333 0.3334 0.3333]
0.3333 0.2000 0O

(b) Assumen; = ny = ng = 10, Cy = 900; then fromStep 3we get:

a=[0= [0.3333 0.3334 0.3333} , N =090.
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Final population design:

( 9.90
= < 1

0.3333

) (1

2

1.86 9.90

0.3334

Rounding the global weights tpwe obtain

I\

]

\

9.90
1

1
3

1) (1

clve oo

6

9.9
3
5

1

3

o)

0.45 1.86

10

0.45 1.86

3
10

e
10

0.3333

\
, 10
R

/

s
10

L=

)

/

~”~

and

det M(C, N*)

C'_

(

det M (¢*, N*)
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/6
~ 1.0000

N*
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CONCLUDING REMARKS

¢ The definition of the optimal population design we have presented leads to non-uniqu

solutions
e It gives room for tailoring optimum designs to practical requirements.
e It allows the use of additional information an experimenter may Rhave.

e |t gives an experimenter some freedom to impose additional constraints on the desig

variabledl
e It Incorporates the maximum cost of the experiment into the ddisign.

e The Equivalence Theorem works for the global design as well as for the “intermediate

state” design.

29



OPEN PROBLEMS

e Make groups meaningful.
e Introduce correlations among observations (within groups, within patients)

e Produce user-friendly softwale.

°?
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