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MODEL

We consider anonlinear regressionmodel

y = η(t, θ) + ε,

where

t ∈ T = [0, tmax], tmax <∞, denotes an explanatory variable,

θ ∈ Θ ap-dimensional vector of unknown parameters,

Θ a set of admissible values ofθ,

η(t, θ) the expected response att,

ε a random error of observations.
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There is a population ofN individuals for each of whichni measurements are gathered.

The model for each observation can be written as

yki = η(tki ; θ
k
i ) + εki , i = 1, . . . , nk, k = 1, . . . , N

where

yki is an observation at timetki ∈ T ,

εki are i.i.d. random errors with a known densityf , E(εki ) = 0, var(εki ) = σ2.

We assume that the parameter vectorsθki are random, and that

E(θki ) = θ Var(θki ) = diag{σ2
1, ..., σ

2
p}

Efficient estimation of the population parameter vector

ψ = (θ1, . . . , θp, σ
2
1, ..., σ

2
p, σ

2)T

is our primary interest.
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EXPERIMENTAL DESIGN

We assume that the population ofN patients consists ofG groups;

all individuals in the same group follow the same schedule of measurements (design).

We construct the population experimental design in two stages:

Individual level

ξj =

 tj1 . . . tjsj

wj
1 . . . wj

sj

 ; wj
i ∈ (0, 1],

sj∑
i=1

wj
i = 1.

The whole experimental system per individual is described by the pair(ξj, nj),

wherenj is the number of observations per individual.
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Population level

We define the population design as

ζ =

 (ξ1, n1) . . . (ξG, nG)

α1 . . . αG

 ;

G∑
j=1

αj = 1,

whereαj is the proportion of individuals in the whole population who follow plan(ξj, nj).
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FISHER INFORMATION MATRIX

The assumption of independent observations allows us to sum up the FIMs for all single

observations.

M(ζ,N) = N

G∑
j=1

αjM(ξj, nj) = N

G∑
j=1

αjnj

sj∑
i=1

wj
iM(tji ),

where

M(tji ) = E

{
−∂

2`(ψ|yji )
∂ψ∂ψT

}
is the elementary FIM for the observation made at time instanttji and

`(ψ|yji ) = log

∫
Θ

g(yji |θ)h(θ;ψ) dθ,

g(y|θ) is the conditional probability density ofy givenθ,

h(θ;ψ) is the probability density ofθ.
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PROBLEM FORMULATION

The design problem here is to optimize a functionalΨ operating onM, a set of FIMs:

Ψ : M−→ R or Ψ[M(ζ,N)] −→ min .

We look for a designζ? which gives the optimum FIM for some initially chosen values

of the population parameters.

Here, we make the following assumptions:

1.T is compact,

2.M(t) is continuous onT ,

3. Ψ is convex,

4. If M1 ≤
L
M2, thenΨ(M1) ≥ Ψ(M2).
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We constrain the total number of observations to be not greater thanN0:

N

G∑
j=1

αjnj ≤ N0.

In general:

N

G∑
j=1

αjc(ξj, nj) ≤ C0,

wherec(ξj, nj) is a nonnegative cost function,C0 is the total cost.

If N has to be estimated, it is convenient to allow it to take any positive real value.

Then, the optimal solution(ζ?, N ?) satisfies the cost constraint on the boundary, i.e., the

inequality becomes an equality at(ζ?, N ?).
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Further, we introduce the so-calledaverage per total cost(normalized) FIM:

M(υ) =
N

C0

G∑
j=1

αjc(ξj, nj)

sj∑
i=1

wj
iM(tji ) =

G∑
j=1

βjM(ξj),

where

βj =
N

C0
αjc(ξj, nj) ; M(ξj) =

sj∑
i=1

wj
iM(tji )

and

υ =

 ξ1 . . . ξG

β1 . . . βG

 ; βj ∈ (0, 1],
G∑
j=1

βj = 1.

Instead of minimizingΨ(M(ζ,N)) subject to the cost constraints we can equivalently

minimizeΨ(υ) subject to
∑G

j=1 βj = 1.
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However, due to the independence of all the observations the average FIM may be rewrit-

ten in the form

M(υ) =

G∑
j=1

sj∑
i=1

N

C0
αjc(ξj, nj)w

j
iM(tji ) =

G∑
j=1

sj∑
i=1

γjiM(tji )

where

γji =
N

C0
αjc(ξj, nj)w

j
i = βjw

j
i ;

G∑
j=1

sj∑
i=1

γji = 1.

M(υ) can also be written as

M(υ) =

s∑
k=1

γkM(tk) = M(ω),

whereγ1, . . . , γs are the sums ofγji ’s for the repeated time instants.
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The design

ω =

 t1 . . . ts

γ1 . . . γs

 ;

s∑
k=1

γk = 1.

is called aglobal design.

Note

• Such a reformulation simplifies the problem of finding the two level hierarchical op-

timal population design to that of finding the equivalent one level design.

• It significantly reduced the problem of dimensionality.

• The information about groups is included inγji and so inγk. This information is later

recovered after an optimum designω has been found.
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NUMERICAL ALGORITHM

• Substantial difficulties in determining the population designs arises from the fact that

they are not unique.

• The criterionΨ is most often strictly convex onM(Ξ), and this guarantees that the

optimal FIM is unique.

• But this does not mean that(ζ,N) 7→ Ψ[M(ζ,N)] is strictly convex in(ζ,N).

•Multiple global solutions(ζ?, N ?) may yield the same minimum value ofΨ(M(ζ,N)).
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The determination of a final solution can be achieved in three steps:

Step 1.Solve the optimization problem:

ω? = arg min
ω∈Ξ

Ψ(M(ω)).

Step 2.Transformω? into an equivalent designυ? ∈ Υ, which satisfies

υ? = arg min
υ∈Υ

Ψ(M(υ)).

Step 3.Transformυ? into an equivalent design pair(ζ?, N ?).
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In Step 2we allow zero weights and we solve the following system of equations:


βjw

j
i − γji = 0, i = 1, . . . , s, j = 1, . . . , G (sG nonlinear equations)∑s

i=1w
j
i = 1, j = 1, . . . , G (G linear equations)∑G

j=1 γ
j
i = γ?i , j = 1, . . . , s (s linear equations)

There ares(G− 1) more variables than equations.

Treatings(G− 1) variablesγji as nonnegative parameters the solution becomes simple: β?j =
∑s

i=1 γ
j
i , j = 1, . . . , G,

wj?
i = γji /β

?
j , i = 1, . . . , s, j = 1, . . . , G,

These values are further used inStep 3.
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The optimal values of the population parametersα?j , n
?
j , j = 1, . . . , G andN ? can be

retrieved solving the system of equations:
N

C0
αjc(ξ

?
j , nj) = β?j , j = 1, . . . , G (G nonlinear equations)∑G

i=1 αj = 1, (1 linear equation)

Here we haveG + 1 equations (and2G + 1 variables) which can be solved numerically

up toG parameters.

For example, if the numbers of observations per individual in each group,nj, are known

then the optimal solution is

N ? = C0

G∑
j=1

β?j
c(ξ?j , nj)

, α?j =
C0

N ?

β?j
c(ξ?j , nj)

, j = 1, . . . , G.
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Two special forms of population designs which minimizeΨ[M(ζ,N)] are the following:

(i) one-group design

ζ? =

{
ω?

1

}
, N ? = C0

c(ω?,n1)
, n1 > 0

that is

ζ? =


 t1 . . . ts

γ1 . . . γs

 , n1


1

 ; N ?
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(ii) one-point s-group design

ζ? =

{
ω?

1 . . . ω?
s

q?
1 . . . q?

s

}
, N ? = C0

∑s
j=1

q?j
c(ω?j ,nj)

, ω?j =
{
t?j
1

}
, nj > 0, j = 1, . . . , s.

That is

ζ? =


({

t?1
1

}
, n1

)
. . .

({
t?s
1

}
, ns

)
q?1 . . . q?s

 ; N ?

There are other possibilities, depending on what information we put into the reformulat-

ing systems of equations.
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EXAMPLE: ONE-COMPARTMENT PK MODEL
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Model

y =
Dka

V (ke − ke)

(
e−ket − e−kat

)
+ ε,

whereka andke are the first-order absorption and elimination rates,V is the apparent

volume of distribution andD is a known dose.

The regression parametersθ = (V, ka, ke)
T are independent and normally distributed.

The initial values of the population parameters are:

ψ0 =
(

E(V )0,E(ka)
0,E(ke)

0, var(V )0, var(ka)
0, var(ke)

0, var(ε)0)T

= (100, 2.08, 0.1155, 0.3, 0.3, 0.03, 0.15)T

We are looking for aD-optimum population design

in time domainT = [0.25, 12], for cost functionc(ξ, n) = n andC0 = 900.
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Figure 1: Variance of the response prediction.

Theglobal designfrom theStep 1of the algorithm is:

ω? =

 0.45 1.86 9.90

0.3334 0.3334 0.3333


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Relationships among the unknowns

γ1
1 γ2

1 · · · γG1 γ?1

γ1
2 γ2

2 · · · γG2 γ?2
... ... ... ... ...

γ1
s γ2

s · · · γGs γ?s

β1 β2 · · · βG 1

w1
1 w2

1 · · · wG
1

w1
2 w2

2 · · · wG
2

... ... ... ...

w1
s w2

s · · · wG
s

1 1 · · · 1

wj
i =

γ
j
i
βj

(1) One group design,G = 1

(a) In Step 2:

Γ = [γ1
i ] = [γ?i ] =


0.3333

0.3334

0.3333

 =⇒ β =
[
1
]
, W = Γ
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We have

N = C0

G∑
j=1

βj
nj
, αj =

C0

N

βj
nj
, j = 1, . . . , G.

(b) Assumen1 = 9, C0 = 900; then inStep 3we obtain:α = 1, N = 100

with the final population design:

ζ? =


 0.45 1.86 9.90

0.3333 0.3334 0.3333

 , 9


1

 ; N ? = 100.

Here, for each patient we have to conduct exactly three measurements at each time

instant.

22



(2) one-point 3-group population design, s = G = 3

(a)FromStep 2:

Γ =


0.3333 0.0 0.0

0.0 0.3334 0.0

0.0 0.0 0.3333

 =⇒ β =
[
0.3333 0.3334 0.3333

]
,W = I

(b) Assumen1 = n2 = n3 = 10, C0 = 900; then fromStep 3we have:

α = β =
[
0.3333 0.3334 0.3333

]
, N = 90

and the final population design is:

ζ? =


(
{ 0.45

1 } , 10
) (

{ 1.86
1 } , 10

) (
{ 9.90

1 } , 10
)

0.3333 0.3334 0.3333

 ; N ? = 90

Here, each group has 30 patients, each patient has 10 samples taken at the same

time instant.
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(3) unstructured design,G = 3

(a) In Step 2 the weights of the global design are randomly split into the required

number of groups and number of support points in individual group designs,e.g.

Γ =


0.2298 0.1036 0

0 0.2089 0.1245

0.1710 0.0855 0.0768

 ,
then

β =
[
0.4008 0.3979 0.2013

]
, W =


0.5733 0.2603 0

0 0.5248 0.6184

0.4267 0.2149 0.3816


(b) Assumen1 = n2 = n3 = 10, C0 = 900; then fromStep 3we have:

α = β =
[
0.4008 0.3979 0.2013

]
, N = 90.
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and the population design:

ζ? =


 0.45 9.90

0.5733 0.4267

 , 10

  0.45 1.86 9.90

0.2603 0.5248 0.2149

 , 10

  1.86 9.90

0.6184 0.3816

 , 10


0.4008 0.3979 0.2013

 , N ? = 90

More realistic design:

ζ =


0.45 9.90

0.6 0.4

 , 10

 0.45 1.86 9.90

0.3 0.5 0.2

 , 10

 1.86 9.90

0.6 0.4

 , 10


0.4 0.4 0.2

 , N ? = 90
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Efficiency:

Eζ =

(
detM(ζ,N ?)

detM(ζ?, N ?)

)1/6

= 0.9984

Note:

• Large total number of measurements ensures small decrease of the efficiency

caused by rounding.

• However, the flexibility in constructing an optimal design allows us to reduce the

influence of rounding on the efficiency of the final design.
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(4) unstructured design,G = 3

(a) In Step 2we can set the elements of matrixW to be appropriate ratios, e.g.

W =


0 0 3

10

0 2
5

7
10

1 3
5 0

 .
Then we obtain

Γ =


0 0 0.1000

0 0.1334 0.2333

0.3333 0.2000 0

 and β =
[
0.3333 0.3334 0.3333

]

(b) Assumen1 = n2 = n3 = 10, C0 = 900; then fromStep 3we get:

α = β =
[
0.3333 0.3334 0.3333

]
, N = 90.
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Final population design:

ζ? =


9.90

1

 , 10

 1.86 9.90

2
5

3
5

 , 10

 0.45 1.86

3
10

7
10

 , 10


0.3333 0.3334 0.3333

 , N ? = 90

Rounding the global weights to13 we obtain

ζ =


9.90

1

 , 10

 1.86 9.90

2
5

3
5

 , 10

 0.45 1.86

3
10

7
10

 , 10


1
3

1
3

1
3

 , N ? = 90

and

Eζ =

(
detM(ζ,N ?)

detM(ζ?, N ?)

)1/6

≈ 1.0000
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CONCLUDING REMARKS

• The definition of the optimal population design we have presented leads to non-unique

solutions.

• It gives room for tailoring optimum designs to practical requirements.

• It allows the use of additional information an experimenter may have.

• It gives an experimenter some freedom to impose additional constraints on the design

variables.

• It incorporates the maximum cost of the experiment into the design.

• The Equivalence Theorem works for the global design as well as for the “intermediate

state” design.
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OPEN PROBLEMS

•Make groups meaningful.

• Introduce correlations among observations (within groups, within patients)

• Produce user-friendly software.

• ?
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