
Numerical investigation of the number of 
design points in Bayesian D-optimal designs in 

respect to prior uncertainty

Aris Dokoumetzidis and Leon Aarons
University of Manchester



In D-optimal designs
Number of unique design points is limited by the “Equivalence Theorem”:

unique time points ≤ number of parameters

parameters also include random effects (?) 

Bayesian design, however may produce more unique design points
Theoretically an arbitrarily large number of points.

We investigate how this happens in respect to the magnitude of prior 
uncertainty starting from zero uncertainty which is the local design.

Also identifiability issues dictate that :

unique time points ≥ number of fixed effects parameters



Methods
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General form of a first order approximation for FIM:

Where  
f: model, X: vector of sampling points, θ: parameters
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Although simpler forms are available
e.g. considering fixed effects with additive error, FIM simplifies to 

and



Optimisation algorithms:
Sequential quadratic programming (SQP) method. (MATLAB routine “fmincon”)
Simulated Annealing algorithm (much slower but more robust)

Sampling for averaging:
Monte Carlo sampling
Latin hypercube sampling, a stratified-random sampling procedure
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Bayesian optimal design:

θ ~ (prior distribution)

Methods
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API design (logged) fixed effects 4 points with additive error model

We use a 3 parameter first order absorption, one-compartment model
with parameters (CL=3.75 L/h, V=15 L, ka=2 h-1)
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We vary the common for all 3 parameters prior uncertainty from CV=0 to 0.7
with a small step, and we estimate and plot  the API design for 4 points for each 
CV value.

For optimisation MATLAB routine “fmincon” was used, which uses a sequential 
quadratic programming (SQP) method. At each iteration a quadratic 
programming (QP) subproblem is solved.



First region similar to local 
(only 3 points). But multifold
computational effort

Extra point comes abruptly at 
CV=0.15

API design (logged) fixed effects 4 points with additive error model

ED design (not logged) does 
not split the design at all (can 
be shown analytically) Pronzato
and Walter. Math Biosci 75: 103 (1985).

local design



API design fixed effects 7 points

Extra points appear gradually at 
CV=0.27, 0.37, 0.43 and 0.53

The initial region is wider than before, 
CV=0.30 instead of CV=0.15. So one can 
go for more points and get less instead.

A point can split twice



Both API (shown) and ED (not shown) designs in fixed effects for
proportional error model, do not split the design. 

Fixed effects for proportional error model

API fixed effects with combined error model behaves similarly to additive (not shown).
ED in this case splits the design but for much higher CV.

Fixed effects for combined error model

However, the exact behaviour for combined error depends on the relation 
between additive and proportional portions.

CV t1 t2 t3 t4

0 0 0 2.96
3.71

24
0.5 0 0 24
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Uniform prior ke ~ U(a, b), where a=0.05 h-1 and b varies

Detailed investigation

Model used (2 param.)

We design for 3 points but t3=0 always so we are interested in the other 2 points



before bifurcation (max on symmetry axis)

The bifurcation is a result of the features of the averaged surface which 
become more pronounced as the uncertainty increases.

cross-section cross-section

API surface API surface

after bifurcation (max off symmetry axis)

ke=1.70



Calculation of the FIM is more expensive so we use Latin hypercube 
sampling instead of Monte Carlo to save time. It is a stratified-random 
sampling procedure.
Example shown before comparing  LHS and MC and showing agreement

Latin hypercube sampling, 200 samples

Monte Carlo sampling, 5000 samples
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Mixed effects



In mixed effects with additive error both API (shown) and  ED behave 
similarly to the fixed effects additive case.

Application to a 2-parameter model f=50/V*exp(-k*t), 
where k=0.25, V=15, BSV=20%, σ=0.1

Mixed effects
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For optimisation, a Simulated Annealing algorithm was used 



For proportional error again both API (shown) and  ED behave similarly 
to the fixed effects and do not split the design

For combined error again both API and  ED behave similarly to the fixed 
effects and split the design (not shown) but this also depends on the 
weight between additive and proportional error.

CV t1 t2 t3 t4

0 0 10.97 10.97
10.78

24
0.5 0 10.78 24



Elementary designs with weights

CV t1 t2

0 2.513 5.725

CV w1 t1 t2 w2 t1 t2

0 0.799 0 4.411 0.201 24 24

0.5 0.783 0 3.672 0.217 24 24

CV w1 t1 t2 t3 w2 t1 t2 t3

0 1 0 3.406 7.745 0 0.558 6.082 22.874
0.5 1 0 2.102 6.655 0 3.467 17.095 21.81
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2 design points

2 elementary designs of 2 points each

2 elementary designs of 3 points each

more than one sampling schemes, weight wi corresponds to the proportion of 
subjects for this elementary design 



Conclusions

• In Bayesian optimal design, the number of design points is not always larger 
than the number of model parameters. 

• The extra points appear under certain conditions that depend on a lot of factors, 
namely the choice of the type of the prior distribution, the magnitude of the 
uncertainty, the central values of the parameters the number of design points 
and the weighting scheme.

• In respect to the magnitude of the uncertainty, and everything else kept the 
same, the extra points appear gradually as the uncertainty increases, for API 
criterion with additive error. This has certain implications:

• We have shown graphically that these features are geometrical particularities 
of the algebraic manipulation involved with the Bayesian criterion used and are 
quite sensitive from a lot of factors.

• A considerable region of small uncertainty gives results almost identical to 
the local design but with multifold computational effort.

• Each extra point appears abruptly after a critical value of the uncertainty 
like a bifurcation. 



Conclusions

• Proportional error does not seem to have the same behaviour and times 
points do not split, while the behaviour with combined error depends on the 
relation between additive and proportional.

• For mixed effects the behaviour is similar to the fixed effects

• If the ED criterion is used instead of the API, the splitting of time points 
occurs again, but for higher uncertainty and especially for additive error in 
fixed effects does not occur at all. Summarising all the cases:

• If elementary designs with weights are used to account for the number of 
subjects for each design, these weights do not change a lot with
uncertainty.

Fixed Mixed
API ED API ED

add yes no
no
yes

yes
prop no

yes
no no

comb yes yes yes


