Using Hamiltonian Monte-Carlo to design longitudinal studies with discrete outcomes accounting for parameter and model uncertainties

Florence Loingeville, Jérémy Seurat, Thu Thuy Nguyen, Marie-Karelle Riviere, France Mentré

IAME, UMR 1137 INSERM - University Paris Diderot, Paris, France

PODE, September 8th, 2017, Basel

Integrated DEsign and AnaLysis of small population group trials

- Introduction
- MC-HMC methods to evaluate the FIM and the robust FIM in NLMEM
- 8 Robust designs in longitudinal trials with count data
- O Robust designs in longitudinal trials with binary data
- Oiscussion

- Last decades: several methods/software for **maximum likelihood estimation** of population parameters from **longitudinal data** using **nonlinear mixed effect models** (NLMEM)
- Problem beforehand: choice of "population" design
 - To obtain precise estimates / adequate power
 - number of individuals?
 - number of sampling times/individual?
 - allocation of sampling times?
 - other design variables (doses, etc.)
 - Clinical trial simulation (CTS): time consuming
 - Asymptotic theory: **expected Fisher Information Matrix** ¹(FIM)

¹ Mentré et al. *Biometrika*, 1997.

Fisher Information Matrix in NLMEM

• Analytical expression for FIM in NLMEM

- Current approach in PFIM ² and other design software programs ³: first order linearisation of model around the expectation of random effects (FO)
 - Only for continuous data
 - Performs well but has limitations in case of complex nonlinear models and/or large variability

• FIM for discrete longitudinal data:

- Methods based on approximations ⁴, ⁵
- We propose new approaches for computation of FIM
 - Monte Carlo Adaptive Gaussian Quadrature (MC-AGQ)⁶
 - Monte Carlo Hamiltonian Monte Carlo (MC-HMC)⁷

These approaches:

- Without model linearisation
- Evaluated and compared to CTS and Laplace approx. on 4 longitudinal data types: continuous, binary, count, time to event

² PFIM group, www.pfim.biostat.fr.

7 Riviere, Ueckert and Mentré. Biostatistics, 2016.

- ³Nyberg et al. Br J Clin Pharmacol, 2014.
- ⁴Waite and Woods. *Biometrika*, 2015.
- ⁵Ogungbenro and Aarons. J Pharmacokinet Pharmacodyn, 2011.
- ⁶Ueckert and Mentré. Comput Stat Data Anal, 2016.

PODE 2017, Basel

• Optimal design depends on knowledge on model and parameters

- Local planification: given the model m and parameter values Ψ_m^*
- Widely used criterion: D-optimality ⁸

• Alternative: Robust designs

- Taking into account uncertainty on parameters
- Across a set of candidate models (Example in dose-response study proposed 9, 10 and implemented in MCP-MOD $^{11})$

⁸Atkinson, Donev and Tobias. Optimum experimental designs, with SAS, 2009.

⁹Bretz, Pinheiro and Branson. *Biometrics*, 2005.

¹⁰ Pinheiro et al. Stat Med, 2014.

¹¹Bornkamp et al. cran.r-project.org/web/packages/MCPMod/index.html, 2008.

Introduction

MC-HMC methods to evaluate the FIM and the robust FIM in NLMEM

- 8 Robust designs in longitudinal trials with count data
- O Robust designs in longitudinal trials with binary data
- 5 Discussion

NLMEM: Notations

For continuous data: $y_i = f(g(\mu, b_i, z_i, \beta), \xi_i) + \epsilon_i$ For discrete data: $p(y_i|b_i) = \prod_{j=1}^{n_i} h(y_{ij}, g(\mu, b_i, z_i, \beta), \xi_i)$

with

 $y_i = (y_{i1}, \dots, y_{in_i})^T$ response for individual i ($i = 1, \dots, N$)

f, h structural model

 ξ_i elementary design for subject i

 $\theta_i = g(\mu, b_i, z_i, \beta)$ individual parameters vector

 μ vector of fixed effects

 b_i vector of random effects for individual $i, b_i \sim \mathcal{N}(0, \Omega)$

 z_i vector of covariates

 β vector of covariate effects

 ϵ_i vector of residual errors, $\epsilon_i \sim \mathcal{N}(0, \Sigma)$ and Σ diagonal matrix

 Ψ : Population parameters { μ , Ω, Σ, β }

MC-HMC method to compute the FIM in NLMEM

Population FIM for one group design: $\mathcal{M}(\Psi, \Xi) = N \times \mathcal{M}(\Psi, \xi)$ Population design $\Xi = \{\xi, N\}$ with identical elementary design ξ in all *N* subjects

Elementary FIM:
$$\mathcal{M}(\psi, \xi) = E_{y} \left(\frac{\partial \log(L(y,\psi))}{\partial \psi} \frac{\partial \log(L(y,\psi))}{\partial \psi} \right)^{T}$$

 $\mathcal{M}(\psi, \xi)_{k,l} = E_{y} \left(\underbrace{\frac{\partial \log(L(y,\psi))}{\partial \psi_{k}} \frac{\partial \log(L(y,\psi))}{\partial \psi_{l}}}_{D_{k,l}} \right)$
Monte Carlo - MC

After calculation... $D_{k,l} \iff$

$$\int_{b_1} \underbrace{\frac{\partial [\log(p(y|b_1,\psi)p(b_1|\psi))}{\partial \psi_k}}_{(b_1,\psi)p(b_1|\psi)} \underbrace{\frac{p(y|b_1,\psi)p(b_1|\psi)}{\int p(y|b,\psi)p(b|\psi)db}}_{(b_1,\psi)p(b_1|\psi)} db_1. \int_{b_2} \underbrace{\frac{\partial [\log(p(y|b_2,\psi)p(b_2|\psi))}{\partial \psi_l}}_{\partial \psi_l} \underbrace{\frac{p(y|b_2,\psi)p(b_2|\psi)}{\int p(y|b,\psi)p(b|\psi)db}}_{(conditional density} db_2.$$

⁷Riviere, Ueckert and Mentré. *Biostatistics*, 2016.

12 Stan Development Team. Stan: A C++ Library for Probability and Sampling.

¹³Riviere and Mentré. https://cran.r-project.org/web/packages/MIXFIM/index.html, 2015.

MC-HMC method to compute the FIM in NLMEM

$$\mathcal{M}(\psi,\xi) = E_{Y}\left(\frac{\partial \log(L(y,\psi))}{\partial \psi} \frac{\partial \log(L(y,\psi))}{\partial \psi}^{T}\right)$$
$$\mathcal{M}(\psi,\xi)_{k,l} = E_{Y}\left(\underbrace{\frac{\partial \log(L(y,\psi))}{\partial \psi_{k}} \frac{\partial \log(L(y,\psi))}{\partial \psi_{l}}}_{D_{k,l}}\right)$$
Monte Carlo - MC

$$\begin{array}{l} \text{After calculation...} \ D_{k,l} \Longleftrightarrow \\ E_b \Big(\frac{\partial (\log(p(y|b,\psi)p(b|\psi)))}{\partial \psi_k} \Big| Y \Big) . E_b \Big(\frac{\partial (\log(p(y|b,\psi)p(b|\psi)))}{\partial \psi_l} \Big| Y \Big) \end{array}$$

Markov Chains Hamiltonian Monte Carlo (MC-HMC)

\Rightarrow Two integrals to compute: w.r.t. y and w.r.t. b

Use of MC and Hamiltonian Monte Carlo (HMC) (in Stan 12) 7, implemented in R package MIXFIM 13

⁷Riviere, Ueckert and Mentré. *Biostatistics*, 2016.

¹² Stan Development Team. Stan: A C++ Library for Probability and Sampling.

¹³ Riviere and Mentré. https://cran.r-project.org/web/packages/MIXFIM/index.html, 2015.

Robust FIM, assuming a distribution $p(\Psi)$ on the parameters

$$\mathcal{M}_{R}(\Xi) = E_{\Psi}(\mathcal{M}(\Psi, \Xi))$$
$$\mathcal{M}_{R}(\Xi) = E_{\Psi}(\mathcal{M}(\Psi, \Xi)) = E_{\Psi}\left(E_{y}(\underbrace{\frac{\partial \log(L(y,\psi))}{\partial \psi_{k}} \frac{\partial \log(L(y,\psi))}{\partial \psi_{l}}^{T}}_{D_{k,l}}\right) = E_{\Psi,y}(D_{k,l})$$

- two integrals w.r.t. *y* and w.r.t. *b* for evaluation of $\mathcal{M}(\Psi, \Xi)$
- one supplementary integral w.r.t. Ψ for evaluation of $\mathcal{M}_R(\Xi)$
- Evaluation by **MC-HMC** using Stan (drawing jointly Ψ and *y* by MC)

Introduction

Ø MC-HMC methods to evaluate the FIM and the robust FIM in NLMEM

8 Robust designs in longitudinal trials with count data

- O Robust designs in longitudinal trials with binary data
- Discussion

Application to robust designs for repeated count data

- Example: Daily count of events that we want to prevent ⁷
- Poisson model for repeated count response

$$P(y=k|b) = \frac{\lambda^k exp(-\lambda)}{k!}$$

• Each patient observed at 3 dose levels (one placebo) during x days

Subject i=1	Subject i=2	Subject i=3	Subject i=4
8-	•	••	Dj 0 0.4 0.7
6- • • • •			•
• • • •	••••	•	•
4		••••• • • • •	• ••• •
2			
0			
1 30 60 9	01 30 60 9	01 30 60 9	01 30 60 90

- Several candidate models for the link between $log(\lambda)$ and dose
- λ : mean number of events / day

⁷Riviere, Ueckert and Mentré. Biostatistics, 2016.

Five models of effect of dose on decreasing Poisson parameter

 $\theta_p = \mu_p exp(b_p); b_p \sim \mathcal{N}(0, \omega_p^2)$

11

Constraints

	Count example	
N	60 subjects	
n _{rep}	<i>n_{rep}</i> 10 replications	
n	3 doses	
Choice of doses	$d_1 = 0$ (placebo) d_2 , d_3 from 0.1 to 1 (step = 0.1, no repetition)	

a priori parameter values / parameter distributions:

			ψ_m^*					$p_m(\psi_m)$)	
	μ_{1}^{*}	μ_2^*	μ_3^*	ω_1^*	ω_2^*	μ_1	μ_2	μ_3	ω_1	ω2
M_1	1.00	0.50		0.30	0.30	1.00	$\mathcal{LN}(-0.89, 0.63)$		0.30	$\mathcal{LN}(-1.50, 0.77)$
M_2	1.00	0.67		0.30	0.30	1.00	$\mathcal{LN}(-0.60, 0.63)$		0.30	$\mathcal{LN}(-1.50, 0.77)$
M_3	1.00	0.96		0.30	0.30	1.00	$\mathcal{LN}(-0.24, 0.63)$		0.30	$\mathcal{LN}(-1.50, 0.77)$
M_4	1.00	0.20	0.80	0.30	0.30	1.00	$\mathcal{LN}(-1.81, 0.63)$	0.80	0.30	$\mathcal{LN}(-1.50, 0.77)$
M ₅	1.00	0.80	0.13	0.30	0.30	1.00	$\mathcal{LN}(-0.60, 0.63)$	0.13	0.30	$\mathcal{LN}(-1.50, 0.77)$

	Model	Given model <i>m</i>	Set of candidate models
Parameters			$m = 1, \ldots, M$
Given paran values ψ	neter * m	D-optimality ⁸ $\Phi_{D,m}(\Xi) = \det(\mathcal{M}(\Psi_{m}^*, \Xi))^{1/P_m}$	Compound-D optimality ⁸ , ¹⁴ , ¹⁵ $\Phi_{CD}(\Xi) = \prod_{m=1}^{M} \Phi_{D,m}(\Xi)^{Wm}$
a priori distributi on parame $p_m(\psi_m)$	on ters)	DE-optimality ⁸ $\Phi_{DE,m}(\Xi) = \det(\mathcal{M}_R(\Xi))^{1/P_m}$	Compound-DE optimality $\Phi_{CDE}(\Xi) = \prod_{m=1}^{M} \Phi_{DE,m}(\Xi)^{w_m}$

- *P_m*: number of population parameters of model *m*
- w_m : weight quantifying the balance between the M models, $\sum_m w_m = 1$

15 Nguyen et al. Pharm Stat, 2016.

⁸Atkinson, Donev and Tobias. *Optimum experimental designs, with SAS*, 2009.

¹⁴ Atkinson et al. J Stat Plan Inference, 2008.

Design optimisation: robustness on model

		Count example
	Evaluation of FIM	5000 MC
	for all 45 possible designs	200 HMC
Combinatorial	For each model	D-criterion on FIM
optimisation	Over 5 models	Compound D-criterion (averaging for uncertainty on models)

Results: Robust design w.r.t model

Optimal doses: $\xi_{D,1} = \{0, 0.4, 0.5\}.$

Optimal doses: $\xi_{D,2} = \{0, 0.9, 1\}.$

Optimal doses: $\xi_{D,3} = \{0, 0.9, 1\}.$

Optimal doses: $\xi_{D,4} = \{0, 0.2, 1\}.$

Optimal doses: $\xi_{D,5} = \{0, 0.5, 1\}.$

	M ₁ Full Emax	M2 Linear	M ₃ Log-linear	M4 Emax	<i>M</i> 5 Quadratic
$\frac{\Xi_{D,1}}{\{N = 60, \xi = (0, 0.4, 0.5)\}}$	100%	60.8%	68.9%	50.3%	27.7%
$\Xi_{D,2}$ { $N = 60, \xi = (0, 0.9, 1)$ }	87.0%	100%	100%	30.8%	67.2%
$\Xi_{D,3}$ { $N = 60, \xi = (0, 0.9, 1)$ }	87.0%	100%	100%	30.8%	67.2%
$\Xi_{D,4}$ { $N = 60, \xi = (0, 0.2, 1)$ }	88.4%	85.7%	85.4%	100%	85.6%
$\Xi_{D,5} \{N = 60, \xi = (0, 0.5, 1)\}$	94.6%	89.9%	91.7%	69.9%	100%

• Important loss of efficiency in some scenarios where the model is not correctly pre-specified

Results: Robust design w.r.t model

Compound D-optimal design: $\xi_{CD} = (0, 0.3, 1)$.

Results: Robust design w.r.t model

	M ₁ Full Emax	M2 Linear	<i>M</i> ₃ Log-linear	M4 Emax	M ₅ Quadratic
$\frac{\Xi_{D,1}}{\{N = 60, \xi = (0, 0.4, 0.5)\}}$	100%	60.8%	68.9%	50.3%	27.7%
$\Xi_{D,2} \\ \{N = 60, \xi = (0, 0.9, 1)\}$	87.0%	100%	100%	30.8%	67.2%
$\Xi_{D,3}$ { $N = 60, \xi = (0, 0.9, 1)$ }	87.0%	100%	100%	30.8%	67.2%
$\Xi_{D,4} \\ \{N = 60, \xi = (0, 0.2, 1)\}$	88.4%	85.7%	85.4%	100%	85.6%
$\Xi_{D,5} \{N = 60, \xi = (0, 0.5, 1)\}$	94.6%	89.9%	91.7%	69.9%	100%
$\Xi_{CD} \\ \{N = 60, \xi = (0, 0.3, 1)\}$	<mark>94.1%</mark>	88.1%	<mark>88.5%</mark>	79.7%	<mark>93.1%</mark>

• Good performance of the compound D-optimal design

Design optimisation: robustness on parameters and model

		Count example
	Evaluation of FIM	5000 MC
	for all 45 possible designs	200 HMC
Combinatorial	For each model	DE-criterion on FIM
optimisation	Over 5 models	Compound DE-criterion (averaging for uncertainty on models)

Results: robust optimal design w.r.t. parameters for each model

 $DE\text{-eff}(\Xi) = \frac{\Phi_{DE}(\Xi)}{\Phi_{DE}(\Xi_{DE})} 20$

 $\text{DE-eff}(\xi_{D,4}) = 84.6\%$

Results: robust optimal design w.r.t. parameters and model

	M ₁ Full Emax	<i>M</i> 2 Linear	M ₃ Log-linear	M4 Emax	M5 Quadratic
$\Xi_{DE,1} \\ \{N = 60, \xi = (0, 0.2, 0.4)\}$	100%	49.9%	56.7%	77.5%	23.6%
$\Xi_{DE,2}$ { $N = 60, \xi = (0, 0.9, 1)$ }	73.3%	100%	100%	43.5%	87.1%
$\Xi_{DE,3}$ { $N = 60, \xi = (0, 0.9, 1)$ }	73.3%	100%	100%	43.5%	87.1%
$\Xi_{DE,4} \\ \{N = 60, \xi = (0, 0.1, 0.7)\}$	89.1%	68.1%	73.9%	100%	51.4%
$\Xi_{DE,5}$ { $N = 60, \xi = (0, 0.5, 1)$ }	83.1%	87.8%	89.6%	58.5%	100%

Results: robust optimal design w.r.t. parameters and model

Compound DE-optimal design: $\xi_{CDE} = (0, 0.2, 1)$. Compound D-optimal design: $\xi_{CD} = (0, 0.3, 1)$.

Results: robust optimal design w.r.t. parameters and model

	M ₁ Full Emax	M ₂ Linear	M ₃ Log-linear	M ₄ Emax	M ₅ Quadratic
$\boxed{ \begin{array}{c} \Xi_{DE,1} \\ \{N = 60, \xi = (0, 0.2, 0.4)\} \end{array} }$	100%	49.9%	56.7%	77.5%	23.6%
$\Xi_{DE,2} \\ \{N = 60, \xi = (0, 0.9, 1)\}$	73.3%	100%	100%	43.5%	87.1%
$\Xi_{DE,3} \\ \{N = 60, \xi = (0, 0.9, 1)\}$	73.3%	100%	100%	43.5%	87.1%
$\Xi_{DE,4} \\ \{N = 60, \xi = (0, 0.1, 0.7)\}$	89.1%	68.1%	73.9%	100%	51.4%
$\Xi_{DE,5} \\ \{N = 60, \xi = (0, 0.5, 1)\}$	83.1%	87.8%	89.6%	58.5%	100%
$\frac{\Xi_{CDE}}{\{N = 60, \xi = (0, 0.2, 1)\}}$	<mark>90.9%</mark>	83.8%	83.9%	84.6%	82.8%

• Efficiency greater than 80% for all models

- MC-HMC method for computation of FIM ⁷ enables applications to design optimisation for count data
- Extension of this method to propose robust optimal designs accounting for uncertainty w.r.t. parameters and/or models

⁷Riviere, Ueckert and Mentré. Biostatistics, 2016.

Introduction

- In MC-HMC methods to evaluate the FIM and the robust FIM in NLMEM
- 8 Robust designs in longitudinal trials with count data
- O Robust designs in longitudinal trials with binary data
- Discussion

Robust designs in longitudinal trials with binary data

Accounting for model uncertainty

Example

Repeated binary data

2 treatment groups : Control vs. Treated

 Logistic models to describe the probability p of response y over time

Robust designs in longitudinal trials with binary data

Accounting for model uncertainty

Example

Repeated binary data

2 treatment groups : Control vs. Treated

• Logistic models to describe the probability p of response y over time

27

Accounting for model uncertainty

Example

Constraints	Number of individuals	N = 100 (50 per treatment group)
	Number of samples	n = 4 by individual (from 0 to 12 months)
	Sampling times $\xi=(t_1,t_2,t_3,t_4)$	$t_1 = 0, t_4 = 12$ months (fixed) t_2, t_3 optimized among 11 possible times from 1 to 11

Parameters of interest	Given model <i>m</i>	Set of candidate models m = 1,,M
All the population parameters	D-optimality ⁸ $\Phi_{D,m} = Det(\mathcal{M}(\psi^*,\Xi))^{\frac{1}{P_m}}$	CD-optimality ^{8,14,15} $\Phi_{CD} = \prod_{m=1}^{M} \Phi_{D,m}^{W_m}$

 P_m : number of parameters

$$\sum_{m=1}^{M} w_m = 1$$
$$w_1 = w_2 = w_3 = w_4 = 1/4$$

8: Atkinson AC. Donev A. and Tobias R., Optimum experimental designs, with SAS, 2009 14: Atkinson AC. et *al.*, J Stat Plan inference, 2008 15: Nguyen TT. et *al.*, Pharm Stat, 2016

Parameters of interest	Given model <i>m</i>	Set of candidate models m = 1,,M
All the population parameters	D-optimality ⁸ $\Phi_{D,m} = Det(\mathcal{M}(\psi^*,\Xi))^{\frac{1}{P_m}}$	CD-optimality ^{8,14,15} $\Phi_{CD} = \prod_{m=1}^{M} \Phi_{D,m}^{W_m}$
Subset of parameters of interest (treatment effect)	$D_{s}\text{-optimality }^{8}$ $\Phi_{D_{s},m} = \left(\frac{Det(\mathcal{M}(\psi^{*},\Xi))}{Det(\mathcal{M}_{t}(\psi^{*},\Xi))}\right)^{\frac{1}{S_{m}}}$	$\mathbf{CD}_{S} \text{-} \mathbf{optimality}$ $\mathbf{\Phi}_{CD_{S}} = \prod_{m=1}^{M} \mathbf{\Phi}_{D_{S},m}^{w_{m}}$

 P_m : number of parameters

 S_m : number of parameters of interest

 \mathcal{M}_t : truncated FIM (without information on parameters of interest)

$$\sum_{m=1}^{M} w_m = 1$$
$$w_1 = w_2 = w_3 = w_4 = 1/4$$

8: Atkinson AC. Donev A. and Tobias R., Optimum experimental designs, with SAS, 2009 14: Atkinson AC. et *al.*, J Stat Plan inference, 2008 15: Nguyen TT. et *al.*, Pharm Stat, 2016

Parameters of interest	Given model <i>m</i>	Set of candidate models m = 1,,M
	D-optimality ⁸	CD-optimality ^{8,14,15} M
All the population parameters	$\Phi_{\mathrm{D},m} = Det(\mathcal{M}(\psi^*,\Xi))^{\frac{1}{P_m}}$	$\boldsymbol{\Phi}_{\mathrm{CD}} = \prod_{m=1}^{W} \boldsymbol{\Phi}_{D,m}^{W_m}$
Subset of parameters of	D _s -optimality ⁸	CD _s -optimality
interest (treatment effect)	$\Phi_{\mathrm{D}_{\mathrm{S}},m} = \left(\frac{Det(\mathcal{M}(\psi^*,\Xi))}{Det(\mathcal{M}_t(\psi^*,\Xi))}\right)^{\frac{1}{S_m}}$	$\mathbf{\Phi}_{\mathrm{CD}_{\mathrm{S}}} = \prod_{m=1}^{M} \mathbf{\Phi}_{\mathrm{D}_{\mathrm{S}},\mathrm{m}}^{w_{m}}$
	DD _S -optimality ^{8,16}	CDD _s -optimality
Compromise	$\Phi_{\mathrm{DD}_{S,m}} = \left(Det \left(\mathcal{M}_t(\psi^*, \Xi) \right) \right)^{\frac{1-\alpha_m}{P_m - S_m}} \left(\frac{Det \left(\mathcal{M}(\psi^*, \Xi) \right)}{Det \left(\mathcal{M}_t(\psi^*, \Xi) \right)} \right)^{\frac{\alpha_m}{S_m}}$	$\boldsymbol{\Phi}_{\text{CDD}_{\text{S}}} = \prod_{m=1}^{M} \boldsymbol{\Phi}_{\text{DD}_{\text{S}},\text{m}}^{w_m}$
	P_m : number of parameters S_m : number of parameters of interest	$\sum_{m=1}^{M} w_m = 1$
	\mathcal{M}_t : truncated FIM (without information on parameters of interest) α_m : interest for S, $0 \le \alpha \le 1$	$w_1 = w_2 = w_3 = w_4 = 1/4$
8: Atkinson AC. Donev A. and Tobias R., Op	timum experimental designs, with SAS, 2009 I5: Nguyen TT. et <i>al.</i> , Pharm Stat, 201	6 31

14: Atkinson AC. et al., J Stat Plan inference, 2008

16: Atkinson AC. and Bogacka B., Technometrics, 1997

Design optimization accounting for model uncertainty

		Binary example
Combinatorial optimisation	Evaluation of FIM by MC/HMC ⁷ for all 55 possible designs ξ	5000 MC 200 HMC
	For each model	D-, D _s - and DD _s -criteria
	Averaging over 4 models	Compound D-, D _s - and DD _s -criteria

- Choice of α_m in $\Phi_{DDs,m}$ for each model
 - $\Phi_{\text{DD}_{S},m}$ computed for values of α between 0 and 1 with a step of 0.05
 - α_m chosen to maximize [D-eff \times D_s-eff]
- Predictions from FIM
 - Relative standard errors (RSE) for population parameters of each model
 - Power of the Wald test to detect a significant effect β (with each model ¹⁷ and average) $\pi_{average} = \sum w_m \pi_m$
 - Number of subjects needed (NSN) to obtain a $\pi_{average}$ of 80%

Results: D-efficiencies for each model

D-efficiency

Final model D-optimal design for a pre-specified model	M1 Linear	M2 Loglinear	M3 Quadratic	M4 Sigmoid Emax
Ξ _{D,1} =(0,2,11,12)	100%	89.8%	81.2%	79.1%
Ξ _{D,2} =(0,1,8,12)	93.2%	100%	87.5%	68.0%
Ξ _{D,3} =(0,4,5,12)	91.6%	83.4%	100%	93.1%
Ξ _{D,4} =(0,3,11,12)	96.3%	85.2%	88.4%	100%

D-efficiency

Final model D-optimal design for a pre-specified model	M1 Linear	M2 Loglinear	M3 Quadratic	M4 Sigmoid Emax
Ξ _{D,1} =(0,2,11,12)	100%	89.8%	81.2%	79.1%
Ξ _{D,2} =(0,1,8,12)	93.2%	100%	87.5%	68.0%
Ξ _{D,3} =(0,4,5,12)	91.6%	83.4%	100%	93.1%
Ξ _{D,4} =(0,3,11,12)	96.3%	85.2%	88.4%	100%
Ξ _{CD} =(0,1,5,12)	94.0%	98.9%	95.1%	86.9%

D_s-efficiencies for each model

D_s-efficiency

Final model D _s -optimal design for a pre-specified model	M1 Linear	M2 Loglinear	M3 Quadratic	M4 Sigmoid Emax
Ξ _{Ds,1} =(0,2,11,12)	100%	80.6%	43.4%	59.5%
Ξ _{Ds,2} =(0,1,11,12)	75.1%	100%	38.9%	60.0%
Ξ _{Ds,3} =(0,5,11,12)	77.4%	60.0%	100%	89%
Ξ _{Ds,4} =(0,6,7,12)	72.0%	60.2%	82.3%	100%

Ξ _{D,1} =(0,2,11,12)
Ξ _{D,2} =(0,1,8,12)
Ξ _{D,3} = (0,4,5,12)
Ξ _{D,4} = (0,3,11,12)

D_s-efficiency

Final model D _s -optimal design for a pre-specified model	M1 Linear	M2 Loglinear	M3 Quadratic	M4 Sigmoid Emax
∃ _{Ds,1} =(0,2,11,12)	100%	80.6%	43.4%	59.5%
Ξ _{Ds,2} =(0,1,11,12)	75.1%	100%	38.9%	60.0%
Ξ _{Ds,3} =(0,5,11,12)	77.4%	60.0%	100%	89%
Ξ _{Ds,4} =(0,6,7,12)	72.0%	60.2%	82.3%	100%
Ξ _{CDs} =(0,5,11,12)	77.4%	63.7%	100%	89%

Ξ_{CD}=(0,1,5,12)

$$CDs-eff(\Xi) = \frac{\Phi_{CDs}(\Xi)}{\Phi_{CDs}(\Xi_{CDs})}$$
$$\Xi_{CDs}: CDs-optimal design$$

36

Choice of α_m for optimal DD_{S,m} design

Choice of α_m for optimal DD_{S,m} design

 \implies DD_s- and CDD_s-optimality computed with α = 0.6

DD_{s} -efficiencies for each model ($\alpha = 0.6$)

 CDD_{s} -efficiencies ($\alpha = 0.6$)

Final model DDs-optimat design for a pre-specified model	M1 Linear	M2 Loglinear	M3 Quadratic	M4 Sigmoid Emax
Ξ _{DDs,1} =(0,2,11,12)	100%	84.5%	57.2%	75.6%
Ξ _{DDs,2} =(0,1,11,12)	82.5%	100%	53.4%	56.9%
Ξ _{DDs,3} =(0,5,11,12)	81.0%	68.3%	100%	99.4%
Ξ _{DDs,4} =(0,5,7,12)	80.7%	69.2%	88.8%	100%
Ξ _{CDDs} =(0,4,11,12)	88.4%	71.5%	93.9%	93.7%

 Ξ_{CDDs} : CDDs-optimal design

Number of subjects needed to reach an average power of 80 %

Conclusion

- Robust designs accounting for model uncertainty
- Balance between the parameters precision and the power of the Wald test
- Next steps:
 - To take into account the parameters uncertainty
 - To perform clinical trials simulations

Discussion

- MC-HMC method for computation of FIM ⁷ enables applications to design optimization for discrete data
- Extension of this method to propose robust designs accounting for uncertainty w.r.t. parameters and/or models / balance between the parameters precision and the power of the Wald test
- Computationally challenging, much slower than FO approach

Perspectives

- Implementation of an optimization algorithm: sparse grids particle swarm optimization ¹⁸
- Replacement of MC by more efficient approach: quasi-random sampling ¹⁹
- Application to other type of data (continuous, time to event)
- Use in model based adaptive design ²⁰⁻²²/ model averaging ²³

7: Riviere M-K. Ueckert S. and Mentré F., Biostatistics, 2016
18: Shi Y., Zhang Z. and Wong W.K., BIRS Design Workshop, Canada, 2017
19: Ueckert S. and Mentré F., CM Statistics Conference, UK, 2015

20: Lestini G., Dumont C. and Mentré F., Pharm Res, 2015
21: Dumont C. *et al.*, Commun Stat Simul Comput, 2016
22: Strömberg E.A. and Hooker A.C., JPKPD, 2017

43

Thank you for your attention

D-optimal times

.

Efficacité des protocoles optimaux selon le modèle final

Protocole robuste CDD_c-optimal

Modèle final Protocole D-optimal du modèle <i>a priori</i>	M1 Linéaire	M2 Loglinéaire	M3 Quadratique	M4 Emax sigmoïde
ξ _{D,1} =(0,2,11,12)	100 %	89,8 %	81,2 %	79,1 %
ξ _{D,2} =(0,1,8,12)	93,2 %	100 %	87,5 %	68,0 %
ξ _{D,3} =(0,4,5,12)	91,6 %	83,4 %	100 %	93,1 %
ξ _{D,4} =(0,3,11,12)	96,3 %	85,2 %	88,4 %	100 %
ξ _{CD} =(0,1,5,12)	94,0 %	98,9 %	95,1 %	86,9 %
ξ _{CDDs} =(0,4,11,12)	91,0 %	82,8 %	97,7 %	99,5 %

D-efficacité

NSN pour une puissance de 80 % du test de Wald

ξ _{CD} =(0,1,5,12)	170	142	198	386
ξ _{CDDs} =(0,4,11,12)	150	214	144	294

Simulations d'essais cliniques avec le protocole CDD_s -optimal ξ_{CDDs} =(0,4,11,12) et 294 patients

Clinical trial simulations

Clinical trial simulations (CTS) : For each candidate model, 500 datasets with a treatment effect (under H₁) and 500 without treatment effect (under H₀)

- Estimation of the parameters of each candidate model, by maximum likelihood (SAEM algorithm of MONOLIX 2016R1)
- Comparison between predictions by FIM and results with CTS

Comparison of predictions (FIM) and observations (CTS)

Relative standard errors of parameters

Comparison of predictions (FIM) and observations (CTS) Type I error

Power of the Wald test

	FIM Predicted power (%)	CTS Observed power using estimated SE [CI ₉₅] (%)
M1	97.7	99.8 [98.9;100]
M2	90.9	98.4 [96.9;99.3]
M3	97.8	99.6 [98.6;100]
M4	80.1	86.3 [83.0;89.2]

CTS Observed power = Proportion of significant Wald tests with a type I error of 5 %

Travaux de méthodologie : Développer une approche robuste et adaptative tenant compte de l'incertitude du modèle et des valeurs de paramètres

Planification de design prenant en compte l'incertitude du modèle **et des paramètres**

Incorporation de ces méthodes robustes dans la planification adaptative

Schéma adaptatif **non** robuste

Travaux de méthodologie : Développer une approche robuste et adaptative tenant compte de l'incertitude du modèle et des valeurs de paramètres

Planification de design prenant en compte l'incertitude du modèle **et des paramètres**

Incorporation de ces méthodes robustes dans la planification adaptative Schéma adaptatif robuste

- Extension du schéma de planification non robuste ⁸
 - Prise en compte de l'incertitude du modèle et des paramètres à chaque étape
 - Méthode de « model averaging » ⁹
 - Influence du nombre d'étapes S et de la taille de chaque cohorte N_s
 - Étude des critères d'arrêt
 - Évaluation par CTS

Predicted RSE (N=100)

Table A1. Predicted relative standard errors (%) of candidate models parameters

RSE		μ_1	μ_2	μ_3	β	ω_1^2	ω_2^2	ω_3^2									
Model	Optimal design																
M1	$\Xi_{D,1} = (0,2,11,12)$	15	34	-	40	136	56	-	М3	$\Xi_{D,3} = (0,4,5,12)$	13	38	-	47	111	80	-
	$\Xi_{D_{S},1} = (0,2,11,12)$	15	34	-	40	136	56	-		$\Xi_{D_{S,3}} = (0,5,11,12)$	15	34	-	41	135	58	-
	$\Xi_{DD_{S},1} = (0,2,11,12)$	15	34	-	40	136	56	-		$\Xi_{DD_{S,3}} = (0,5,11,12)$	15	34	-	41	135	58	-
	$\Xi_{CD} = (0,1,5,12)$	14	37	-	46	121	71	-		$\Xi_{CD} = (0,1,5,12)$	13	38	-	50	108	82	-
	$\Xi_{CD_S} = (0,5,11,12)$	16	35	-	46	153	54	-		$\Xi_{CD_S} = (0,5,11,12)$	15	34	-	41	135	58	-
	$\Xi_{CDD_S} = (0,4,11,12)$	16	35	-	43	147	55	-		$\Xi_{CDD_{S}} = (0,4,11,12)$	15	34	-	43	130	57	-
M2	$\Xi_{D,2} = (0,1,8,12)$	15	34	-	42	139	56	-	M4	$\Xi_{D_4} = (0,3,11,12)$	16	32	24	66	140	59	269
	$\Xi_{D_{S},2} = (0,1,11,12)$	15	34	-	42	144	55	-		$\Xi_{D_{S},4} = (0,6,7,12)$	18	39	28	52	172	72	290
	$\Xi_{DD_{S,2}} = (0,1,11,12)$	15	34	-	42	144	55	-		$\Xi_{\text{DD}_{S},4} = (0,5,7,12)$	17	37	25	54	164	71	283
	$\Xi_{CD} = (0,1,5,12)$	15	35	-	42	139	58	-		$\Xi_{CD} = (0,1,5,12)$	14	38	31	70	120	89	266
	$\Xi_{CD_S} = (0,5,11,12)$	18	35	-	54	169	49	-		$\Xi_{CD_S} = (0,5,11,12)$	18	34	22	55	169	58	283
	$\Xi_{CDD_{S}} = (0,4,11,12)$	17	35	-	52	164	50	-		$\Xi_{CDD_S} = (0,4,11,12)$	17	33	22	61	155	59	279