

Implementing Optimal Designs for Dose-Response Studies through Adaptive Randomization for a Small Population Group

Yevgen Ryeznik^{1,2}, Oleksandr Sverdlov³, Andrew C. Hooker²

¹Department of Mathematics, Uppsala University

²Department of Pharmaceutical Biosciences, Uppsala University

 $^3\mathrm{Novartis}$ Institutes for BioMedical Research

PODE 2017

Outline

2 Randomization targeting (un)equal allocation

3 Simulation study

Outline

2 Randomization targeting (un)equal allocation

3 Simulation study

Accelerated Failure Time (AFT) Model

Let T > 0 be a time-to-event variable:

 $T \sim Weibull(\lambda, p).$

We consider the following AFT model with a single covariate x:

$$\log T = \beta_0 + \beta_1 x + \beta_2 x^2 + b\varepsilon,$$

where

- x corresponds to a dose (treatment arm),
- scale parameter: $\lambda = \exp(\beta_0 + \beta_1 x + \beta_2 x^2)$,
- shape parameter: $p = b^{-1}$,
- and $\varepsilon \sim f_{\varepsilon}(v) = \exp(v \exp(v)) extreme value distribution.$

Accelerated Failure Time (AFT) Model

Dose-response relashionship: $Median(T|x) = \exp(\beta_0 + \beta_1 x + \beta_2 x^2) \{\log(2)\}^b$

Ryeznik, Y., Sverdlov, O., Hooker, A.C.

Implementing Optimal Designs

Likelihood and Fisher Information

- For a sample of *n* patients and a vector of parameters $\boldsymbol{\theta} = (\boldsymbol{\beta}^{\mathrm{T}}, b)^{\mathrm{T}}$ one can calculate log-*likelihood function* log $\mathcal{L}(\boldsymbol{\theta})$.
- Then, MLEs of unknown model parameters $(\hat{\theta}_{MLE})$ are the solutions of score equations

$$rac{\partial \mathrm{log}\,\mathcal{L}(oldsymbol{ heta})}{\partial oldsymbol{ heta}} = \left(egin{array}{c} rac{\partial \mathrm{log}\,\mathcal{L}(oldsymbol{ heta})}{\partial oldsymbol{ heta}} \ rac{\partial \mathrm{log}\,\mathcal{L}(oldsymbol{ heta})}{\partial b} \end{array}
ight) = oldsymbol{0}$$

• The corresponding Fisher Information Matrix is

$$I(\boldsymbol{\theta}) = -\mathbf{E}\left(\frac{\partial^2 \log \mathcal{L}(\boldsymbol{\theta})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\mathrm{T}}}\right)$$

Experimental Design

A K-points design is determined by a discrete probability measure

$$\xi = \left(\begin{array}{ccc} x_1 & x_2 & \dots & x_K \\ \rho_1 & \rho_2 & \dots & \rho_K \end{array}\right),$$

where

- K is a number of doses (treatment arms).
- x_1, x_2, \ldots, x_K are selected doses.
- $\rho_1, \rho_2, \ldots, \rho_K$ are proportions of subjects assigned to corresponding doses.

$$x_k \in \mathcal{X} = [0; 1], \qquad \sum_{k=1}^K \rho_k = 1.$$

Experimental Design

A K-points design is determined by a discrete probability measure

$$\xi = \left(\begin{array}{ccc} x_1 & x_2 & \dots & x_K \\ \rho_1 & \rho_2 & \dots & \rho_K \end{array}\right),$$

where

- K is a number of doses (treatment arms) K is to be determined.
- x_1, x_2, \ldots, x_K are selected doses doses are to be determined.
- *ρ*₁, *ρ*₂,..., *ρ*_K are proportions of subjects assigned to corresponding doses proportions are to be determined.

$$x_k \in \mathcal{X} = [0; 1], \qquad \sum_{k=1}^K \rho_k = 1.$$

Ryeznik, Y., Sverdlov, O., Hooker, A.C.

Implementing Optimal Designs

D-optimal Design

• For a given design ξ the full *Fisher Information Matrix* is

$$FIM(\xi, \boldsymbol{\theta}) = n \sum_{k=1}^{K} \rho_k I(\boldsymbol{\theta} | x_k).$$

• Then, a *D-optimal design* is determined as a solution of the following optimization problem

$$\xi_D^* = \arg\max_{\xi} |FIM(\xi, \theta)|.$$

D-optimal Design

Without censoring, *D-optimal design* is a 3-points balanced (uniform) design

$$\left(\begin{array}{rrr} 0 & 0.5 & 1 \\ 1/3 & 1/3 & 1/3 \end{array}\right),$$

where $\left[\begin{array}{ccc} 0 & - & {\rm minimum\ dose} \\ 0.5 & - & {\rm average\ dose} \\ 1 & - & {\rm maximum\ dose} \end{array} \right]$

D-optimal Design

In the presence of censoring *D*-optimal design still has 3 points but it is shifted from the uniform design.

Ryeznik, Y., Sverdlov, O., Hooker, A.C.

Implementing Optimal Designs

Q: Given (D-)optimal design ξ^* and sample size n, how to implement it in practice, i.e. **how to target optimal proportions** $\rho_k^*, k = 1, 2, ..., K$?

Q: Given (D-)optimal design ξ^* and sample size n, how to implement it in practice, i.e. **how to target optimal proportions** $\rho_k^*, k = 1, 2, ..., K$?

A: To choose a proper *randomization procedure*!

Ryeznik, Y., Sverdlov, O., Hooker, A.C.

Implementing Optimal Designs

Outline

2 Randomization targeting (un)equal allocation

3 Simulation study

Ryeznik, Y., Sverdlov, O., Hooker, A.C.

Implementing Optimal Designs

• Balance

- Treatment group sizes should be very close to the desired target allocation ratio, *throughout the course of the trial*

• Randomness

- The procedure should have low proportion of deterministic assignments to minimize chance of selection bias

• Known statistical properties

- The procedure should have *established statistical properties* and should lead to *valid statistical inference* at the end of the trial

• Ease of implementation

Notations used

K	Number of treatment arms $(K \ge 2)$
$w_1: w_2: \ldots : w_K$	Target allocation ratio (integers with $GCD = 1$)
$\rho_k = \frac{w_k}{\sum\limits_{k=1}^{K} w_k}$	Target allocation proportions $(0 < \rho_k < 1, \sum_{k=1}^{K} \rho_k = 1)$
n	Total sample size for the trial
$N_1(j), N_2(j), \ldots, N_K(j)$	Treatment group sizes after j subjects have been randomized $(N_1(j) + N_2(j) + \ldots + N_K(j) = j)$
$P_1(j), P_2(j), \ldots, P_K(j)$	Randomization probabilities to treatments $1, 2,, K$ for the <i>j</i> -th subject $(0 \le P_k(j) \le 1$ and $P_1(j) + P_2(j) + + P_K(j) = 1)$

Example

• Design

$$\xi = \left(\begin{array}{rrr} 0 & 0.25 & 0.59 \\ 0.39 & 0.35 & 0.26 \end{array}\right)$$

- K = 3 (a three-arm trial)
- $\rho_1 = 0.39, \, \rho_2 = 0.35, \, \rho_3 = 0.26$ target allocation proportions for treatments 1, 2, 3
- n = 100 total sample size
- It is desirable to achive final sample sizes as follows:

$$N_1 = 39, N_2 = 35, N_3 = 26,$$

i.e. target allocation ratio is

$$w_1: w_2: w_3 = 39: 35: 26$$

• It is also desirable to have $j^{-1}N_k(j) \approx \rho_k$; k = 1, 2, 3 throughout the trial, while maintaining the randomized nature of the experiment

- Completely Randomized Design CRD
- **2** Permuted Block Design PBD(b)
- **3** Block Urn Design $BUD(\lambda)$
- **4** Mass Weighted Urn Design MWUD(α)
- **③** Drop-the-Loser Rule $DL(\alpha)$
- **(2)** Doubly Adaptive Biased Coin Design $DBCD(\gamma)$
- **②** Constraint Balance Randomization $MaxEnt(\eta)$ and $MinQD(\eta)$

- Completely Randomized Design CRD
- **2** Permuted Block Design PBD(b)
- **3** Block Urn Design $BUD(\lambda)$
- **4** Mass Weighted Urn Design MWUD(α)
- **(a)** Drop-the-Loser Rule $DL(\alpha)$
- **(3)** Doubly Adaptive Biased Coin Design $DBCD(\gamma)$
- **O** Constraint Balance Randomization $MaxEnt(\eta)$ and $MinQD(\eta)$

All the designs depend on a tweak parameter the choice of which is an open question!

- Zhao W, Weng Y (2011). "Block urn design. A new randomization algorithm for sequential trials with two or more treatments and balanced or unbalanced allocation". *Contemporary Clinical Trials* 32, 953-961.
- 2 Zhao W (2015). "Mass weighted urn design. A new randomization algorithm for unequal allocations". Contemporary Clinical Trials 43, 209-216.
- Ivanova A (2003). "A play-the-winner-type urn design with reduced variability". Metrika 58, 1-13.
- Hu F, Zhang LX (2004). "Asymptotic properties of doubly adaptive biased coin designs for multitreatment clinical trials". The Annals of Statistics 32(1), 268-301.
- Titterington DM (1983). "On constrained balance randomization for clinical trials". *Biometrics* 39(4), 1083-1086
- Klotz JH (1978). "Maximum entropy constrained balance randomization in clinical trials". *Biometrics* 34(2), 283-287.

Ryeznik, Y., Sverdlov, O., Hooker, A.C.

Implementing Optimal Designs

As to our knowledge, the impact of randomization for the inference has not been considered so far!

Ryeznik, Y., Sverdlov, O., Hooker, A.C.

Implementing Optimal Designs

Target proportions, rho=(0.39, 0.35, 0.26)

Ryeznik, Y., Sverdlov, O., Hooker, A.C.

Implementing Optimal Designs

Imbalance:
$$Imb(j) = j^{-1} \sqrt{\sum_{k=1}^{K} (N_k(j) - j\rho_k)^2}, j = 1, 2, \dots n$$

Maximum Imbalance (MI) vs. Number of Subjects

Forcing Index:
$$FI(j) = j^{-1} \sum_{i=1}^{j} \sqrt{\sum_{k=1}^{K} (P_{kj} - \rho_k)^2}, j = 1, 2, \dots n$$

PODE 2017

Allocation Ratio Preserving (ARP) Property: $\mathbf{E}(P_{kj}) = \rho_k, k = 1, 2, \dots, K.$ Unconditional allocation probability, rho=(0.39, 0.35, 0.26) BUD(2)

Ryeznik, Y., Sverdlov, O., Hooker, A.C.

Implementing Optimal Designs

Outline

2 Randomization targeting (un)equal allocation

3 Simulation study

Ryeznik, Y., Sverdlov, O., Hooker, A.C.

Implementing Optimal Designs

Fixed D-optimal Design

Implementing Optimal Designs

Fixed D-optimal Design

Implementing Optimal Designs

Two-stage Adaptive D-optimal Design

Average relative $D-\text{eficiency: }RelEff=\left(\frac{|FIM(\xi^{(2)},\boldsymbol{\theta})|}{|FIM(\xi^*,\boldsymbol{\theta})|}\right)^{1/4}$

Outline

2 Randomization targeting (un)equal allocation

3 Simulation study

Ryeznik, Y., Sverdlov, O., Hooker, A.C.

Implementing Optimal Designs

Summary

- Different randomization procedures have been considered for implementation of D-optimal design for dose-finding studies with TTE outcomes.
- The choice of randomization procedure can be important for implementation of experimental design.
- When the model parameters are known, then the estimation of dose-response curve can be too uncertain when a sample size is small.
- When the model parameters are unknown two-stage adaptive design has been considered. The efficiency of a 2nd stage design may depend on the randomization procedure in the first stage.

Thank You!

Ryeznik, Y., Sverdlov, O., Hooker, A.C.

Implementing Optimal Designs