Parameter estimation
 via constraint propagation

Warwick Tucker
The CAPA group
Department of Mathematics
University of Uppsala, Sweden

Problem formulation

A classic inverse problem/parameter estimation setting: given a finitely parametrized model function

$$
y=f\left(x ; p_{1}, p_{2}, \ldots, p_{m}\right)=f(x ; p)
$$

together with some (noisy) data

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right)
$$

and a search region \mathcal{P} in parameter space, try to find parameters that give a good agreement between the data and the model.

Problem formulation

A classic inverse problem/parameter estimation setting: given a finitely parametrized model function

$$
y=f\left(x ; p_{1}, p_{2}, \ldots, p_{m}\right)=f(x ; p)
$$

together with some (noisy) data

$$
\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{N}, y_{N}\right)
$$

and a search region \mathcal{P} in parameter space, try to find parameters that give a good agreement between the data and the model.

- Here, f can be almost anything (a function, an ODE, a PDE, some process...). This means that no single method is best.

Introduction

Known difficulties

Known difficulties

- Existence: with noisy data, or with an incorrect model, there is usually no parameter at all that produces a perfect fit between the model and the data.

Introduction

Known difficulties

- Existence: with noisy data, or with an incorrect model, there is usually no parameter at all that produces a perfect fit between the model and the data.
- Uniqueness: even with unlimited amounts of exact data, there might not exist a unique solution $p^{\sharp} \in \mathcal{P}$ such that

$$
f\left(x_{i} ; p^{\sharp}\right)=y_{i} \quad i=1, \ldots, N .
$$

Introduction

Known difficulties

- Existence: with noisy data, or with an incorrect model, there is usually no parameter at all that produces a perfect fit between the model and the data.
- Uniqueness: even with unlimited amounts of exact data, there might not exist a unique solution $p^{\sharp} \in \mathcal{P}$ such that

$$
f\left(x_{i} ; p^{\sharp}\right)=y_{i} \quad i=1, \ldots, N .
$$

- Instability: many inverse problems are extremely unstable (ill-conditioned): a small perturbation in data produces a large change in the fitted parameter.

A statistical approach

Assume that the model is correct, and that the data is perturbed via some probability distribution (almost always normal):

A statistical approach

Assume that the model is correct, and that the data is perturbed via some probability distribution (almost always normal):
(1) Generate data: $y_{i}^{\sharp}=f\left(x_{i} ; p^{\sharp}\right) \quad i=1, \ldots, N$

A statistical approach

Assume that the model is correct, and that the data is perturbed via some probability distribution (almost always normal):
(1) Generate data: $y_{i}^{\sharp}=f\left(x_{i} ; p^{\sharp}\right) \quad i=1, \ldots, N$
(2) Perturb data: $y_{i}=y_{i}^{\sharp}+\eta_{i} \quad \eta_{i} \sim N\left(0, \sigma^{2}\right)$

A statistical approach

Assume that the model is correct, and that the data is perturbed via some probability distribution (almost always normal):
(1) Generate data: $y_{i}^{\sharp}=f\left(x_{i} ; p^{\sharp}\right) \quad i=1, \ldots, N$
(2) Perturb data: $y_{i}=y_{i}^{\sharp}+\eta_{i} \quad \eta_{i} \sim N\left(0, \sigma^{2}\right)$

Then use a (weighted) least-squares approach to find the best parameter.

A statistical approach

Assume that the model is correct, and that the data is perturbed via some probability distribution (almost always normal):

$$
\begin{array}{ll}
\text { (1) Generate data: } y_{i}^{\sharp}=f\left(x_{i} ; p^{\sharp}\right) & i=1, \ldots, N \\
\text { (2) Perturb data: } y_{i}=y_{i}^{\sharp}+\eta_{i} & \eta_{i} \sim N\left(0, \sigma^{2}\right)
\end{array}
$$

Then use a (weighted) least-squares approach to find the best parameter.

- If the parameters enter f linearly, this is "straight-forward".

A statistical approach

Assume that the model is correct, and that the data is perturbed via some probability distribution (almost always normal):

$$
\begin{array}{ll}
\text { (1) Generate data: } y_{i}^{\sharp}=f\left(x_{i} ; p^{\sharp}\right) & i=1, \ldots, N \\
\text { (2) Perturb data: } y_{i}=y_{i}^{\sharp}+\eta_{i} & \eta_{i} \sim N\left(0, \sigma^{2}\right)
\end{array}
$$

Then use a (weighted) least-squares approach to find the best parameter.

- If the parameters enter f linearly, this is "straight-forward".
- Otherwise, we have moved the problem to global optimization.

A statistical approach

Assume that the model is correct, and that the data is perturbed via some probability distribution (almost always normal):

$$
\begin{array}{ll}
\text { (1) Generate data: } y_{i}^{\sharp}=f\left(x_{i} ; p^{\sharp}\right) & i=1, \ldots, N \\
\text { (2) Perturb data: } y_{i}=y_{i}^{\sharp}+\eta_{i} & \eta_{i} \sim N\left(0, \sigma^{2}\right)
\end{array}
$$

Then use a (weighted) least-squares approach to find the best parameter.

- If the parameters enter f linearly, this is "straight-forward".
- Otherwise, we have moved the problem to global optimization.
- The selection of weights is almost always a delicate issue.

A set-valued approach
Assume that the model is uncertain, and that the data is perturbed via some unknown mechanism.
Rather than seaching for the least-squares best fit, we attempt to locate nearby models that are consistent with nearby data:

A set-valued approach

Assume that the model is uncertain, and that the data is perturbed via some unknown mechanism.
Rather than seaching for the least-squares best fit, we attempt to locate nearby models that are consistent with nearby data:
(1) Widen data: $\boldsymbol{y}_{i}=y_{i}(1+\alpha[-1,1]) \quad i=1, \ldots, N$

A set-valued approach

Assume that the model is uncertain, and that the data is perturbed via some unknown mechanism.
Rather than seaching for the least-squares best fit, we attempt to locate nearby models that are consistent with nearby data:
(1) Widen data: $\boldsymbol{y}_{i}=y_{i}(1+\alpha[-1,1]) \quad i=1, \ldots, N$
(2) Consistent set: $\mathcal{S}=\cap_{i=1}^{N}\left\{p \in \mathcal{P}: f\left(x_{i} ; p\right) \in \boldsymbol{y}_{i}\right\}$.

Introduction

A set-valued approach

Assume that the model is uncertain, and that the data is perturbed via some unknown mechanism.
Rather than seaching for the least-squares best fit, we attempt to locate nearby models that are consistent with nearby data:

$$
\begin{aligned}
& \text { (1) Widen data: } \boldsymbol{y}_{i}=y_{i}(1+\alpha[-1,1]) \quad i=1, \ldots, N \\
& \text { (2) Consistent set: } \mathcal{S}=\cap_{i=1}^{N}\left\{p \in \mathcal{P}: f\left(x_{i} ; p\right) \in \boldsymbol{y}_{i}\right\} .
\end{aligned}
$$

Of course, \mathcal{S} is very hard to find, but by discretizing the search space $\mathcal{P} \rightarrow \mathcal{P}_{K}$, we can form an inner/outer enclosure of \mathcal{S} :

$$
\begin{aligned}
\underline{\mathcal{S}} & =\left\{\boldsymbol{p} \subset \mathcal{P}_{K}: f\left(x_{i} ; \boldsymbol{p}\right) \subset \boldsymbol{y}_{i} \text { for all } i=1, \ldots, N\right\} \\
\overline{\mathcal{S}} & =\left\{\boldsymbol{p} \subset \mathcal{P}_{K}: f\left(x_{i} ; \boldsymbol{p}\right) \cap \boldsymbol{y}_{i} \neq \emptyset \text { for all } i=1, \ldots, N\right\}
\end{aligned}
$$

Introduction

A set-valued approach

Assume that the model is uncertain, and that the data is perturbed via some unknown mechanism.
Rather than seaching for the least-squares best fit, we attempt to locate nearby models that are consistent with nearby data:

$$
\begin{aligned}
& \text { (1) Widen data: } \boldsymbol{y}_{i}=y_{i}(1+\alpha[-1,1]) \quad i=1, \ldots, N \\
& \text { (2) Consistent set: } \mathcal{S}=\cap_{i=1}^{N}\left\{p \in \mathcal{P}: f\left(x_{i} ; p\right) \in \boldsymbol{y}_{i}\right\} .
\end{aligned}
$$

Of course, \mathcal{S} is very hard to find, but by discretizing the search space $\mathcal{P} \rightarrow \mathcal{P}_{K}$, we can form an inner/outer enclosure of \mathcal{S} :

$$
\begin{aligned}
\underline{\mathcal{S}} & =\left\{\boldsymbol{p} \subset \mathcal{P}_{K}: f\left(x_{i} ; \boldsymbol{p}\right) \subset \boldsymbol{y}_{i} \text { for all } i=1, \ldots, N\right\} \\
\overline{\mathcal{S}} & =\left\{\boldsymbol{p} \subset \mathcal{P}_{K}: f\left(x_{i} ; \boldsymbol{p}\right) \cap \boldsymbol{y}_{i} \neq \emptyset \text { for all } i=1, \ldots, N\right\}
\end{aligned}
$$

The coarser the discretization of \mathcal{P}, the less we trust the model.

Set-valued computations

Interval analysis

All our computations are set-valued, and are based on the inclusion principle:

$$
\operatorname{range}(g ; \boldsymbol{x})=\{g(x): x \in \boldsymbol{x}\} \subseteq g(\boldsymbol{x})
$$

Set-valued computations

Interval analysis

All our computations are set-valued, and are based on the inclusion principle:

$$
\operatorname{range}(g ; \boldsymbol{x})=\{g(x): x \in \boldsymbol{x}\} \subseteq g(\boldsymbol{x})
$$

Set-valued computations

Interval analysis

All our computations are set-valued, and are based on the inclusion principle:

$$
\operatorname{range}(g ; \boldsymbol{x})=\{g(x): x \in \boldsymbol{x}\} \subseteq g(\boldsymbol{x})
$$

Interval Computations Web Page
http://www.cs.utep.edu/interval-comp

Set-valued computations

Points versus sets in parameter space

We move from the point-valued model function $f(x ; p)$ to the set-valued version $f(x ; \boldsymbol{p})$.

Points versus sets in parameter space

We move from the point-valued model function $f(x ; p)$ to the set-valued version $f(x ; \boldsymbol{p})$.

Figure: (a) $p=0.15$, a point in \mathcal{P}. (b) $\boldsymbol{p}=[0.14,0.16]$, a subset of \mathcal{P}. The model function is $f(x ; p)=x e^{-p x}$, and 10 samples are shown.

Parameter reconstruction

Strategy

Adaptively bisect the parameter space into sub-boxes: $\mathcal{P}=\cup_{j=1}^{K} \boldsymbol{p}_{j}$ and examine each \boldsymbol{p}_{j} separately.

Parameter reconstruction

Strategy

Adaptively bisect the parameter space into sub-boxes: $\mathcal{P}=\cup_{j=1}^{K} \boldsymbol{p}_{j}$ and examine each \boldsymbol{p}_{j} separately.

We will associate each sub-box \boldsymbol{p} of the parameter space to one of three categories:

Parameter reconstruction

Strategy

Adaptively bisect the parameter space into sub-boxes: $\mathcal{P}=\cup_{j=1}^{K} \boldsymbol{p}_{j}$ and examine each \boldsymbol{p}_{j} separately.

We will associate each sub-box \boldsymbol{p} of the parameter space to one of three categories:

$$
\begin{aligned}
& \text { (1) consistent } \\
& \text { if } f\left(x_{i} ; \boldsymbol{p}\right) \subset \boldsymbol{y}_{i} \text { for all } i=0, \ldots, N \text {. SAVE }
\end{aligned}
$$

Parameter reconstruction

Strategy

Adaptively bisect the parameter space into sub-boxes: $\mathcal{P}=\cup_{j=1}^{K} \boldsymbol{p}_{j}$ and examine each \boldsymbol{p}_{j} separately.

We will associate each sub-box \boldsymbol{p} of the parameter space to one of three categories:
(1) consistent
if $f\left(x_{i} ; \boldsymbol{p}\right) \subset \boldsymbol{y}_{i}$ for all $i=0, \ldots, N$.
(2) inconsistent
if $f\left(x_{i} ; \boldsymbol{p}\right) \cap \boldsymbol{y}_{i}=\emptyset$ for at least one i.
TRASH

Parameter reconstruction

Strategy

Adaptively bisect the parameter space into sub-boxes: $\mathcal{P}=\cup_{j=1}^{K} \boldsymbol{p}_{j}$ and examine each \boldsymbol{p}_{j} separately.

We will associate each sub-box \boldsymbol{p} of the parameter space to one of three categories:
(1) consistent
if $f\left(x_{i} ; \boldsymbol{p}\right) \subset \boldsymbol{y}_{i}$ for all $i=0, \ldots, N$.
(2) inconsistent
if $f\left(x_{i} ; \boldsymbol{p}\right) \cap \boldsymbol{y}_{i}=\emptyset$ for at least one i.
TRASH
(3) undetermined
not (1), but $f\left(x_{i} ; \boldsymbol{p}\right) \cap \boldsymbol{y}_{i} \neq \emptyset$ for all $i=0, \ldots, N$.

Parameter reconstruction

Example

Consider the model function

$$
f\left(x ; p_{1}, p_{2}\right)=5 e^{-p_{1} x}-4 \times 10^{-6} e^{-p_{2} x}
$$

with samples taken at $x=0,5 \ldots, 40$ using $p^{\star}=(0.11,-0.32)$. With a relative noise level of 90%, we get the following set of consistent parameters:

Parameter reconstruction

Example

Consider the model function

$$
f\left(x ; p_{1}, p_{2}\right)=5 e^{-p_{1} x}-4 \times 10^{-6} e^{-p_{2} x}
$$

with samples taken at $x=0,5 \ldots, 40$ using $p^{\star}=(0.11,-0.32)$. With a relative noise level of 90%, we get the following set of consistent parameters:

Parameter reconstruction

Varying the relative noise levels between $10,20 \ldots, 90 \%$, we get the following indeterminate sets.

Constraint propagation

Constraining the parameter/data space

Constraint propagation

Constraining the parameter/data space

- Q: How do we speed up the estimation process?

Constraint propagation

Constraining the parameter/data space

- Q: How do we speed up the estimation process?
- A: By quickly discarding inconsistent parameters/data!

Constraint propagation

Constraining the parameter/data space

- Q: How do we speed up the estimation process?
- A: By quickly discarding inconsistent parameters/data!
- Q: How do we do that?

Constraint propagation

Constraining the parameter/data space

- Q: How do we speed up the estimation process?
- A: By quickly discarding inconsistent parameters/data!
- Q: How do we do that?
- A: By set-valued constraint propagation!

Constraint propagation

Constraining the parameter/data space

- Q: How do we speed up the estimation process?
- A: By quickly discarding inconsistent parameters/data!
- Q: How do we do that?
- A: By set-valued constraint propagation!

Example

Let $f(x ; p)=x e^{-p x}$, and consider the situation $\boldsymbol{p}=[0,1]$ and $(x, \boldsymbol{y})=(2,[1,3])$.

Constraint propagation

Constraining the parameter/data space

- Q: How do we speed up the estimation process?
- A: By quickly discarding inconsistent parameters/data!
- Q: How do we do that?
- A: By set-valued constraint propagation!

Example

Let $f(x ; p)=x e^{-p x}$, and consider the situation $\boldsymbol{p}=[0,1]$ and $(x, \boldsymbol{y})=(2,[1,3])$. By a forward evaluation, we have

$$
f(2 ;[0,1])=2 e^{-2[0,1]}=2 e^{[-2,0]}=2\left[e^{-2}, 1\right]=\left[2 e^{-2}, 2\right] .
$$

Constraint propagation

Constraining the parameter/data space

- Q: How do we speed up the estimation process?
- A: By quickly discarding inconsistent parameters/data!
- Q: How do we do that?
- A: By set-valued constraint propagation!

Example

Let $f(x ; p)=x e^{-p x}$, and consider the situation $\boldsymbol{p}=[0,1]$ and $(x, \boldsymbol{y})=(2,[1,3])$. By a forward evaluation, we have

$$
f(2 ;[0,1])=2 e^{-2[0,1]}=2 e^{[-2,0]}=2\left[e^{-2}, 1\right]=\left[2 e^{-2}, 2\right] .
$$

This allows us to contract the data range according to

$$
\boldsymbol{y} \mapsto \boldsymbol{y} \cap f(x ; \boldsymbol{p})=[1,3] \cap\left[2 e^{-2}, 2\right]=[1,2] .
$$

Constraint propagation

Directed Acyclic Graphs (DAGs)
We use a DAG representation of the model function to automate constraint propagations.

Constraint propagation

Directed Acyclic Graphs (DAGs)

We use a DAG representation of the model function to automate constraint propagations.

Constraint propagation

Directed Acyclic Graphs (DAGs)

We use a DAG representation of the model function to automate constraint propagations.

Figure: The DAG representation of a forward sweep of $y=x e^{-p x}$, together with the corresponding code list.

Constraint propagation

Directed Acyclic Graphs (DAGs)

We can propagate constraints from data to the parameter by moving backwards in the code list.

Constraint propagation

Directed Acyclic Graphs (DAGs)

We can propagate constraints from data to the parameter by moving backwards in the code list.

Constraint propagation

Directed Acyclic Graphs (DAGs)

We can propagate constraints from data to the parameter by moving backwards in the code list.

Figure: The DAG representation of a backward sweep of $y=x e^{-p x}$, together with the corresponding code list.

Constraint propagation

Example

Again, we work on the model function $y=f(x ; p)=x e^{-p x}$, but now with the data $(x, \boldsymbol{y})=(2,[1,3])$, together with the parameter domain $\boldsymbol{p}=[0,1]$.

Constraint propagation

Example

Again, we work on the model function $y=f(x ; p)=x e^{-p x}$, but now with the data $(x, \boldsymbol{y})=(2,[1,3])$, together with the parameter domain $\boldsymbol{p}=[0,1]$. The forward sweep, performed in Example 2, contracts the interval data to $\boldsymbol{y}=[1,2]$.

Constraint propagation

Example

Again, we work on the model function $y=f(x ; p)=x e^{-p x}$, but now with the data $(x, \boldsymbol{y})=(2,[1,3])$, together with the parameter domain $\boldsymbol{p}=[0,1]$. The forward sweep, performed in Example 2, contracts the interval data to $\boldsymbol{y}=[1,2]$. Performing a backward sweep contracts the interval parameter to $\boldsymbol{p}=\left[0, \frac{1}{2} \log 2\right]$:

$$
\begin{aligned}
& n_{5}=n_{6} \div n_{1}=[1,2] \div 2=\left[\frac{1}{2}, 1\right] \\
& n_{4}=\log n_{5}=\log \left[\frac{1}{2}, 1\right]=[-\log 2,0] \\
& n_{3}=-n_{4}=[0, \log 2] \\
& n_{2}=n_{3} \div n_{1}=\frac{1}{2}[0, \log 2] \approx[0,0.34657359] .
\end{aligned}
$$

Constraint propagation

Example

Again, we work on the model function $y=f(x ; p)=x e^{-p x}$, but now with the data $(x, \boldsymbol{y})=(2,[1,3])$, together with the parameter domain $\boldsymbol{p}=[0,1]$. The forward sweep, performed in Example 2, contracts the interval data to $\boldsymbol{y}=[1,2]$. Performing a backward sweep contracts the interval parameter to $\boldsymbol{p}=\left[0, \frac{1}{2} \log 2\right]$:

$$
\begin{aligned}
& n_{5}=n_{6} \div n_{1}=[1,2] \div 2=\left[\frac{1}{2}, 1\right] \\
& n_{4}=\log n_{5}=\log \left[\frac{1}{2}, 1\right]=[-\log 2,0] \\
& n_{3}=-n_{4}=[0, \log 2] \\
& n_{2}=n_{3} \div n_{1}=\frac{1}{2}[0, \log 2] \approx[0,0.34657359] .
\end{aligned}
$$

Note that, in one forward/backward sweep, we managed to exclude over 65% of the parameter domain, at the same time reducing the data uncertainty by 50%.

Mixed-effects models

We are given several data sets (trajectories) corresponding to k different "individuals":

$$
\begin{array}{ll}
\text { individual }_{1}: & \left(x_{11}, y_{11}\right),\left(x_{12}, y_{12}\right), \ldots,\left(x_{1 N}, y_{1 N_{1}}\right) \\
\text { individual }_{2}: & \left(x_{21}, y_{21}\right),\left(x_{22}, y_{22}\right), \ldots,\left(x_{2 N}, y_{2 N_{2}}\right)
\end{array}
$$

individual $_{k}$:

$$
\left(x_{k 1}, y_{k 1}\right),\left(x_{k 2}, y_{k 2}\right), \ldots,\left(x_{k N}, y_{k N_{k}}\right) .
$$

Some model parameters are equal (shared) for all individuals, and some are distinct.

Mixed-effects models

Mixed-effects models

We are given several data sets (trajectories) corresponding to k different "individuals":
individual $_{1}: \quad\left(x_{11}, y_{11}\right),\left(x_{12}, y_{12}\right), \ldots,\left(x_{1 N}, y_{1 N_{1}}\right)$
individual $_{2}: \quad\left(x_{21}, y_{21}\right),\left(x_{22}, y_{22}\right), \ldots,\left(x_{2 N}, y_{2 N_{2}}\right)$
individual $_{k}: \quad\left(x_{k 1}, y_{k 1}\right),\left(x_{k 2}, y_{k 2}\right), \ldots,\left(x_{k N}, y_{k N_{k}}\right)$.
Some model parameters are equal (shared) for all individuals, and some are distinct.

- We need to consider all individuals simultaneously. Otherwise the number of unknown parameters may be too large.

A mixed-effects model for orange tree truncs

Example

We will apply our method to the following scenario:

A mixed-effects model for orange tree truncs

Example

We will apply our method to the following scenario:

$$
\text { Model function: } \quad f(x ; p)=\frac{p_{1}}{1+p_{2} e^{p_{3} x}}
$$

A mixed-effects model for orange tree truncs

Example

We will apply our method to the following scenario:

$$
\text { Model function: } \quad f(x ; p)=\frac{p_{1}}{1+p_{2} e^{p_{3} x}}
$$

Individual parameter: $\quad p_{i 1}=p_{1}^{\sharp}+\eta_{i}, \quad \eta_{i} \sim N\left(0, \sigma^{2}\right)$

A mixed-effects model for orange tree truncs

Example

We will apply our method to the following scenario:

$$
\text { Model function: } \quad f(x ; p)=\frac{p_{1}}{1+p_{2} e^{p_{3} x}}
$$

Individual parameter:

$$
p_{i 1}=p_{1}^{\sharp}+\eta_{i}, \quad \eta_{i} \sim N\left(0, \sigma^{2}\right)
$$

Data perturbation:

$$
y_{i j}=y_{i j}^{\sharp}\left(1+\theta_{i j}\right), \quad \theta_{i j} \sim U(-\epsilon,+\epsilon)
$$

A mixed-effects model for orange tree truncs

Example

We will apply our method to the following scenario:

$$
\text { Model function: } \quad f(x ; p)=\frac{p_{1}}{1+p_{2} e^{p_{3} x}}
$$

Individual parameter:

$$
p_{i 1}=p_{1}^{\sharp}+\eta_{i}, \quad \eta_{i} \sim N\left(0, \sigma^{2}\right)
$$

Data perturbation:

$$
y_{i j}=y_{i j}^{\sharp}\left(1+\theta_{i j}\right), \quad \theta_{i j} \sim U(-\epsilon,+\epsilon)
$$

For this specific example, we will use $N_{p} \in\{1,2,5,50\}$ subjects, sampled at $N_{d}=10$ data sites, evenly spaced within [100, 1600].

A mixed-effects model for orange tree truncs

Example

We will apply our method to the following scenario:
Model function: $\quad f(x ; p)=\frac{p_{1}}{1+p_{2} e^{p_{3} x}}$
Individual parameter:

$$
p_{i 1}=p_{1}^{\sharp}+\eta_{i}, \quad \eta_{i} \sim N\left(0, \sigma^{2}\right)
$$

Data perturbation:

$$
y_{i j}=y_{i j}^{\sharp}\left(1+\theta_{i j}\right), \quad \theta_{i j} \sim U(-\epsilon,+\epsilon)
$$

For this specific example, we will use $N_{p} \in\{1,2,5,50\}$ subjects, sampled at $N_{d}=10$ data sites, evenly spaced within [100, 1600].

Target parameters:

$$
p^{\sharp}=(191.84,8.153,-0.0029), \sigma=20, \epsilon \in\{0.01,0.1,0.2,0.5\} .
$$

A mixed-effects model for orange tree truncs

Example

We will apply our method to the following scenario:

$$
\text { Model function: } \quad f(x ; p)=\frac{p_{1}}{1+p_{2} e^{p_{3} x}}
$$

Individual parameter:

$$
p_{i 1}=p_{1}^{\sharp}+\eta_{i}, \quad \eta_{i} \sim N\left(0, \sigma^{2}\right)
$$

Data perturbation:

$$
y_{i j}=y_{i j}^{\sharp}\left(1+\theta_{i j}\right), \quad \theta_{i j} \sim U(-\epsilon,+\epsilon)
$$

For this specific example, we will use $N_{p} \in\{1,2,5,50\}$ subjects, sampled at $N_{d}=10$ data sites, evenly spaced within [100, 1600].

Target parameters:

$$
p^{\sharp}=(191.84,8.153,-0.0029), \sigma=20, \epsilon \in\{0.01,0.1,0.2,0.5\} .
$$

Search region:

$$
\mathcal{P}=([0,300],[0,9],[-1,0]) .
$$

Figure: Data inflation and contraction for the example. The graph of the model function for one subject (blue line). The data points are marked with red dots. The inflated data sets are shown as striped bars, and the re-contracted data as green bars.

A mixed-effects model for orange tree truncs

Numerical results

	$N_{p}=1$	$N_{p}=2$
$\epsilon=0.01$	$190.639(--)(0.010)$	$193.141(19.6)(0.013)$
$\epsilon=0.1$	$194.139(--)(0.092)$	$195.233(21.1)(0.097)$
$\epsilon=0.2$	$189.139(--)(0.190)$	$193.437(20.3)(0.192)$
$\epsilon=0.5$	$167.226(--)(0.604)$	$167.770(26.6)(0.589)$

	$N_{p}=5$	$N_{p}=50$
$\epsilon=0.01$	$191.675(20.1)(0.014)$	$191.239(20.1)(0.012)$
$\epsilon=0.1$	$192.954(21.4)(0.099)$	$198.428(22.2)(0.110)$
$\epsilon=0.2$	$191.773(20.3)(0.203)$	$197.580(23.6)(0.214)$
$\epsilon=0.5$	$164.656(23.9)(0.620)$	$174.318(27.1)(0.618)$

Table: The results of four experiments for the example, each using 100 trial runs with $p_{1}=191.184$, and $\sigma=20.0$. For each pair $\left(\epsilon, N_{p}\right)$, we display the triple $\mu\left(p_{1}\right), \mu(\sigma)$, and $\mu(\epsilon)$ - the average estimates of the distribution parameters for p_{1}, and the data error.

Figure: The set of consistent parameters for two subjects from the example.

Summary

Main steps

Summary

Main steps

- Relax the problem via data inflation,

Summary

Main steps

- Relax the problem via data inflation,
- Reduce the data and parameter sets via constraint propagation,

Main steps

- Relax the problem via data inflation,
- Reduce the data and parameter sets via constraint propagation,
- Produce traditional statistics via data gridding/sampling.

Main steps

- Relax the problem via data inflation,
- Reduce the data and parameter sets via constraint propagation,
- Produce traditional statistics via data gridding/sampling.

CAPA

Computer-Aided Proofs in Analysis Web Page

> http://www2.math.uu.se/~warwick/CAPA/

A short message from your sponsors...

Validated Numerics:

A Short Introduction to Rigorous Computations

Warwick Tucker
Princeton University Press, 2011
ISBN: 9780691147819
152 pp.|6×9|41 illus.|12 tables.
USD 45.00/GBP 30.95
http://press.princeton.edu/titles/9488.html

