Evaluation of the bayesian individual information matrix in nonlinear mixed effect models using Monte Carlo integration

Florence Loingeville, Thu Thuy Nguyen, Marie-Karelle Riviere and France Mentré Monday, 20th June, 2016, PODE, Uppsala

INSERM, IAME, UMR 1137, F-75018 Paris, France;

Univ Paris Diderot, Sorbonne Paris Cité, F-75018 Paris, France

Contents

1 Introduction

- 2 Evaluation of the iBIM
 - General expression
 - MC-based approach

O Evaluation by simulations

- Continuous example : PK Warfarin
- Discrete example : Poisson model
- Methods
- Results

Contents

1 Introduction

- Evaluation of the iBIM
 General expression
 MC-based approach
 - Evolution by simulation
 - Continuous example : PK Warfarin
 - Discrete example : Poisson model
 - Methods
 - Results

4 Discussion

iBIM evaluation

Evaluation by simulations

Introduction

- Parameter estimation in nonlinear mixed effect models (NLMEM) :
 - Population parameters : by Maximum Likelihood approach
 - Individual parameters : by Bayesian approach
- Design evaluation and optimisation
 - Individual Fisher information matrix (IFIM) : for individual regression
 - Population Fisher information matrix (PFIM)¹: for analysis with NLMEM, implemented in several design software² based on first-order linearization (FO)
 - Individual bayesian information matrix (iBIM) 3 : for bayesian individual estimation, based on FO $^{4,\,5}$
- 1. Mentré et al. (1997). Biometrika.
- 2. Nyberg et al. (2014). Br J Clin Pharmacol.
- 3. Merlé et al. (1995). J Pharmacokinet Biopharm.
- 4. Combes et al. (2013). Pharm Res.
- 5. PFIM 4.0. www.pfim.biostat.fr.

Limitations of FO :

- High nonlinearity
- High variability + sparse design
- Discrete data

Alternatives proposed :

- For PFIM :
 - Laplace & MC⁶,
 - Adaptive Gaussian Quadrature⁷, ⁸
 - $\bullet~$ MCMC-based approach $^9~$ implemented in R package MIXFIM $^{10}~$ using Stan $^{11}~$

• For iBIM : MC-based approach

- 6. Nyberg et al. (2009). PAGE meeting.
- 7. Nguyen et al. (2014). Computational Statistics & Data Analysis.
- 8. Ueckert et al. (2016). Computational Statistics & Data Analysis.
- 9. Riviere et al. (2016). Biostatistics.
- 10. https://cran.r-project.org/web/packages/MIXFIM/
- 11. Stan Development Team. http://mc-stan.org

Objectives

- To evaluate an approach based on Monte-Carlo (MC) to compute the iBIM :
 - on a pharmacokinetic (PK) model
 - on a model for count data

Contents

Introduction

- 2 Evaluation of the iBIM
 - General expression
 - MC-based approach
- 3 Evaluation by simulations
 - Continuous example : PK Warfarin
 - Discrete example : Poisson model
 - Methods
 - Results

4 Discussion

iBIM evaluation

Evaluation by simulations

Discussion

NLMEM : Notations

For continuous data : For discrete data : $y_i = f(g(\mu, b_i), \xi_i) + \epsilon_i$ $p(y_i|b_i) = \prod_{j=1}^{n_i} h(y_{ij}, g(\mu, b_i), \xi_i)$

with

- $y_i = (y_{i1}, \dots, y_{in_i})^T$ response for individual $i \ (i = 1, \dots, N)$ f, h structural model
- ξ_i elementary design for subject i
- $\theta_i = g(\mu, b_i)$ individual parameters vector
- $\boldsymbol{\mu}$ vector of fixed effects

 b_i vector of random effects for individual *i*, $b_i \sim \mathcal{N}(0, \Omega)$ ϵ_i vector of residual errors, $\epsilon_i \sim \mathcal{N}(0, \Sigma)$ and Σ diagonal matrix

$$p(y_i|b_i) = \mathcal{N}(f, \Sigma)$$

iBIM evaluation ○●○○○ Evaluation by simulations

Discussion

Expression of the iBIM

The individual bayesian information matrix can be expressed as :

$$\begin{split} iBIM(\xi_i) &= E_{b_i} \left(E_{y_i|b_i} \left(\frac{\partial \log(p(b_i|y_i))}{\partial b_i} \frac{\partial \log(p(b_i|y_i))^T}{\partial b_i} \right) \right) \\ &= E_{b_i} \left(E_{y_i|b_i} \left(\frac{\partial \log(p(y_i|b_i))}{\partial b_i} \frac{\partial \log(p(y_i|b_i))^T}{\partial b_i} \right) \right) + E_{b_i} \left(\frac{\partial \log(p(b_i))}{\partial b_i} \frac{\partial \log(p(b_i))^T}{\partial b_i} \right) \\ &= \underbrace{E_{b_i} \left(M_{IF}(g(\mu, b_i), \xi_i) \right)}_{\substack{\text{Individual} \\ \text{information}}} + \underbrace{E_{b_i} \left(\frac{\partial \log(p(b_i))}{\partial b_i} \frac{\partial \log(p(b_i))^T}{\partial b_i} \right)}_{\substack{\text{Prior information}}} \end{split}$$

iBIM evaluatio

Evaluation by simulations

Discussion

Expression of the bayesian individual information matrix

$$iBIM(\xi_i) = \underbrace{E_{b_i}\left(M_{IF}(g(\mu, b_i), \xi_i)\right)}_{\substack{\text{Individual}\\ \text{information}}} + \underbrace{E_{b_i}\left(\frac{\partial \log(p(b_i))}{\partial b_i}\frac{\partial \log(p(b_i))^T}{\partial b_i}\right)}_{\text{Prior information}}$$

The first expectation :

iBIM evaluatio

Evaluation by simulations

Discussion

Expression of the bayesian individual information matrix

$$iBIM(\xi_i) = \underbrace{E_{b_i}\left(M_{IF}(g(\mu, b_i), \xi_i)\right)}_{\substack{\text{Individual}\\ \text{information}}} + \underbrace{E_{b_i}\left(\frac{\partial \log(p(b_i))}{\partial b_i}\frac{\partial \log(p(b_i))^T}{\partial b_i}\right)}_{\text{Prior information}}$$

The first expectation :

• Can be approximated by FO as $M_{IF}(g(\mu, 0), \xi_i)$

iBIM evaluation

Evaluation by simulations

Expression of the bayesian individual information matrix

$$iBIM(\xi_i) = \underbrace{E_{b_i}\left(M_{lF}(g(\mu, b_i), \xi_i)\right)}_{\substack{\text{Individual}\\ \text{information}}} + \underbrace{E_{b_i}\left(\frac{\partial \log(p(b_i))}{\partial b_i}\frac{\partial \log(p(b_i))^T}{\partial b_i}\right)}_{\text{Prior information}}$$

The first expectation :

- Can be approximated by FO as $M_{IF}(g(\mu, 0), \xi_i)$
- Can be evaluated by MC :

$$\begin{split} \mathsf{E}_{b_i}\left(\mathsf{M}_{\mathit{lF}}(g(\mu, b_i), \xi_i)\right) &= \mathsf{E}_{b_i, y_i}\left(\frac{\partial\left(\log(\mathsf{p}(y_i|b_i))\right)}{\partial b_{i,k}} \cdot \frac{\partial\left(\log(\mathsf{p}(y_i|b_i))\right)}{\partial b_{i,l}}\right) \\ &\approx \frac{1}{R}\sum_{r=1}^R \frac{\partial\left(\log(\mathsf{p}(y_{i,r}|b_{i,r}))\right)}{\partial b_{i,k}} \cdot \frac{\partial\left(\log(\mathsf{p}(y_{i,r}|b_{i,r}))\right)}{\partial b_{i,l}} \end{split}$$

where $(b_{i,r}, y_{i,r})_{r=1,...,R}$ is a *R*-sample of the joint distribution of (b_i, y_i) .

iBIM evaluatio 000€0

Evaluation by simulations

Discussion

Expression of the bayesian individual information matrix

$$iBIM(\xi_i) = \underbrace{E_{b_i}\left(M_{lF}(g(\mu, b_i), \xi_i)\right)}_{\substack{\text{Individual} \\ \text{information}}} + \underbrace{E_{b_i}\left(\frac{\partial \log(p(b_i))}{\partial b_i}\frac{\partial \log p(b_i)\right)^T}{\partial b_i}\right)}_{\text{Prior information}}$$

Second expectation :

MC-based evaluation

$$E_{b_i}\left(\frac{\partial \log(p(b_i))}{\partial b_i}\frac{\partial \log p(b_i))^T}{\partial b_i}\right) = \frac{1}{R}\sum_{r=1}^R \frac{\partial \log(p(b_{i,r}))}{\partial b_{i,k}}\frac{\partial \log(p(b_{i,r}))}{\partial b_{i,l}}$$

where $(b_{i,r})_{r=1,...,R}$ is a *R*-sample of the marginal prior distribution of b_i .

iBIM evaluatio 000€0

Evaluation by simulations

Expression of the bayesian individual information matrix

$$iBIM(\xi_i) = \underbrace{E_{b_i}\left(M_{lF}(g(\mu, b_i), \xi_i)\right)}_{\substack{\text{Individual} \\ \text{information}}} + \underbrace{E_{b_i}\left(\frac{\partial \log(p(b_i))}{\partial b_i}\frac{\partial \log p(b_i)\right)^T}{\partial b_i}\right)}_{\text{Prior information}}$$

Second expectation :

MC-based evaluation

$$E_{b_i}\left(\frac{\partial \log(p(b_i))}{\partial b_i}\frac{\partial \log p(b_i))^T}{\partial b_i}\right) = \frac{1}{R}\sum_{r=1}^R \frac{\partial \log(p(b_{i,r}))}{\partial b_{i,k}}\frac{\partial \log(p(b_{i,r}))}{\partial b_{i,l}}$$

where $(b_{i,r})_{r=1,...,R}$ is a *R*-sample of the marginal prior distribution of b_i .

Normal random effects

$$E_{b_i}\left(\frac{\partial \log(p(b_i))}{\partial b_i}\frac{\partial \log p(b_i))^T}{\partial b_i}\right) = \Omega^{-1}$$

iBIM evaluation

Evaluation by simulations

Discussion

Implementation in R

MC-based approach : implemented in R based on functions of rstan package :

- Monte Carlo (MC) sampler to sample in posterior distributions
- Calculation of the gradient of the log probability function

Contents

Introduction

- Evaluation of the iBIM
 General expression
 - MC-based approach

O Evaluation by simulations

- Continuous example : PK Warfarin
- Discrete example : Poisson model
- Methods
- Results

4 Discussion

iBIM evaluation

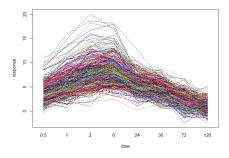
Evaluation by simulations

Discussion

Continuous example⁷ : PK Warfarin

One compartment model with first order absorption and elimination :

$$f((K_a, V, CL), t) = \frac{70}{V} \frac{K_a}{K_a - \frac{CL}{V}} \left(e^{-\frac{CL}{V}t} - e^{-K_a t} \right)$$



- Fixed effects : $(\mu_{Ka}, \mu_V, \mu_{CL}) = (1.00, 8.00, 0.15)$
- Exponential random effects with : $(\omega_{Ka}, \omega_V, \omega_{CL}) = (0.3, 0.3, 0.3)$
- Residual error : $\Sigma(g(\mu, b_i), \xi) = diag((\sigma_{inter} + \sigma_{slope} f(\theta, \xi))^2)$

12. Nyberg et al. (2014). British Journal of Clinical Pharmacology.

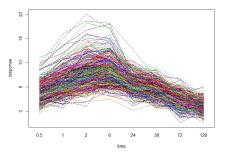
iBIM evaluation

Evaluation by simulations 000000 Discussion

Continuous example⁷ : PK Warfarin

One compartment model with first order absorption and elimination :

$$f((K_a, V, CL), t) = \frac{70}{V} \frac{K_a}{K_a - \frac{CL}{V}} \left(e^{-\frac{CL}{V}t} - e^{-K_a t} \right)$$



2 error models :

• Proportional residual error :

 $\sigma_{\textit{inter}} = 0$ and $\sigma_{\textit{slope}} = 0.1$

• Additive residual error : $\sigma_{inter} = 1$ and $\sigma_{slope} = 0$

iBIM evaluation

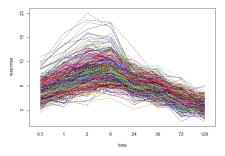
Evaluation by simulations

Discussion

Continuous example⁷ : PK Warfarin

One compartment model with first order absorption and elimination :

$$f((K_a, V, CL), t) = \frac{70}{V} \frac{K_a}{K_a - \frac{CL}{V}} \left(e^{-\frac{CL}{V}t} - e^{-K_a t} \right)$$



2 error models :

• Proportional residual error :

 $\sigma_{\textit{inter}} = 0$ and $\sigma_{\textit{slope}} = 0.1$

• Additive residual error : $\sigma_{inter} = 1$ and $\sigma_{slope} = 0$

with 2 designs :

• Rich :

 $\xi = (0.5, 1, 2, 6, 24, 36, 72, 120)$

• Sparse (optimal design for proportional error, obtained with FO) :

$$\xi = (0.5, 120)$$
 14/22

The observations are repeated counts for each patient at different dose levels. The probability of each count was modeled using a Poisson distribution :

$$P(y = k|b) = rac{\lambda exp(\lambda)}{k!}$$
 with $\log(\lambda) = \theta_1 \left(1 - rac{d}{d + \theta_2}\right)$

where

- 3-dose-levels design : $\xi = (0, 0.4, 0.7)$ with 30 observations per subject per dose
- Fixed effects : $(\mu_1, \mu_2) = (1, 0.5)$
- Exponential random effects with : $(\omega_1, \omega_2) = (0.3, 0.3)$

^{7.} Riviere et al. (2016). Biostatistics.

Methods

Comparison of standard errors for estimation of random effects b_i :

- FO : predicted standard error *pSE_{FO}*
- MC : predicted standard error *pSE_{MC}*
- with clinical trial simulation (CTS) :
 - $\bullet\,$ Simulation of one dataset with 500 subjects using R
 - Estimation of *b* as the mean of the a posteriori distribution *b*|*y* using Stan (with 200 iterations and 500 burns)
 - Computation of SE_{CTS} as the standard deviation of the a posteriori distribution $b \vert y$

Evaluation by simulations

Results : PK Warfarin model with proportional error

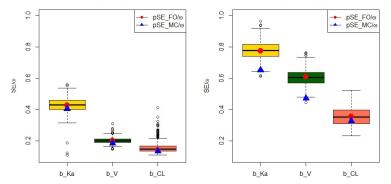
		ω=0.3				
Method	Random factor	pSE_MC 5000 iter	pSE_MC 10000 iter	pSE_MC 20000 iter	pSE_MC 100000 iter	
Rich	Ka	0.12	0.12	0.12	0.12	
design	V	0.05	0.06	0.05	0.05	
(n=8)	CL	0.04	0.04	0.04	0.04	
Sparse	Ka	0.19	0.19	0.20	0.20	
Design	V	0.14	0.14	0.14	0.14	
(n=2)	CL	0.10	0.10	0.10	0.10	

Results : PK Warfarin model with proportional error

		ω=0.3			
Method	Random factor	pSE_MC 5000 iter	pSE_MC 10000	pSE_MC 20000 iter	pSE_MC 100000
			iter		iter
Rich	Ka	0.12	0.12	0.12	0.12
design	V	0.05	0.06	0.05	0.05
(n=8)	CL	0.04	0.04	0.04	0.04
Sparse	Ka	0.19	0.19	0.20	0.20
Design	V	0.14	0.14	0.14	0.14
(n=2)	CL	0.10	0.10	0.10	0.10

Rich design

Sparse design



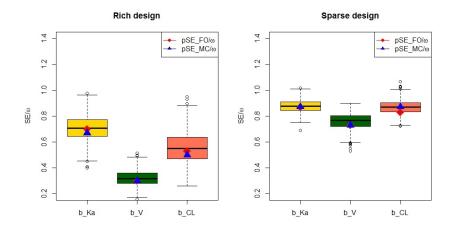
17/22

iBIM evaluation

Evaluation by simulations

Discussion

Results : PK Warfarin model with additive error

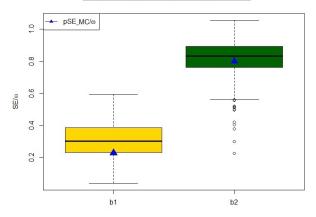


iBIM evaluation

Evaluation by simulations

Results : Poisson model

ω=0.3					
	pSE_MC	pSE_MC	pSE_MC	pSE_MC	
	(5000	(10000	(20000	(100000	
	iter)	iter)	iter)	iter)	
b1	0.07	0.07	0.07	0.08	
b2	0.26	0.24	0.24	0.24	



Contents

Introduction

- Evaluation of the iBIM
 General expression
 MC-based approach
- 3 Evaluation by simulations
 - Continuous example : PK Warfarin
 - Discrete example : Poisson model
 - Methods
 - Results

Discussion

- Alternative to FO, based on MC, to compute the iBIM
 - Adapted for continuous and discrete models
 - No model linearization
 - Agreement with clinical trial simulation results
- Work in progress
 - Evaluation with higher inter-individual variability
 - Evaluation of the uncertainty on the estimation of the iBIM
 - R package on CRAN

Thank you for your attention ! Questions ?