

Simultaneous optimization of a sparse sampling schedule for estimation of piperacillin population PK and individual T>MIC in severe sepsis patients

PODE 2016 UPPSALA

Anders Kristoffersson Uppsala Universitet

Aim

Propose sparse design for simultaneous estimation of

- Population PK
- Individual T>MIC (Time above the minimum inhibitory concentration) of piperacillin

Background Piperacillin/tazobactam

Empirical antibiotic treatment in septic patients

-Piperacillin/tazobactam (4g/0.5g) q8h

PK/PD targets

- 100% T>MIC
- 50% T>4xMIC

Extensive inter-individual PK variations i these patients

- -Antibiotic dosing is a challenge
- -Interest in deciding charachteristics in special populations

Design for two studies explored

- -Children (Henrik Schrøder¹)
- -Severe sepsis patients (Kristina Öbrink-Hansen¹)

1. Department of Infectious Diseases, Aarhus University Hospital - Skejby

Background Piperacillin popPK model septic shock

15 patients

10⁻¹

2

3

Population parameter	Value (RSE%)				
	Typical	IIV			
Cl (L/h)	3.6 (15.7%)	71.2%			
V1 (L)	7.3 (11.8%)	57.8%			
Q (L/h)	6.58 (16.4%)				
V2 (L)	3.9 (9.7%)				
$\beta_{Pcrea}\left(L/\;h\right)/\left(\mu mol/L\right)$	-0.011 (11.9%)				
Proportional error (%)	14.7% (14.4%)				
Cmax (mg/L)	546 (363; 668) ^a				
Cmin (mg/L)	51.7 (10.7; 159.4) ^a				
$AUC_{0\text{-}8h} (mg/L*h)$	1148 (739; 2492) ^a				
$t_{1/2}(h)$	3.49 (1.62; 4.47) ^a				

septic shock Percentiles Piperacillin popPK 10³ 10² 7/gm 10¹ T>MIC 10⁰ LOQ

time (h)

6

8

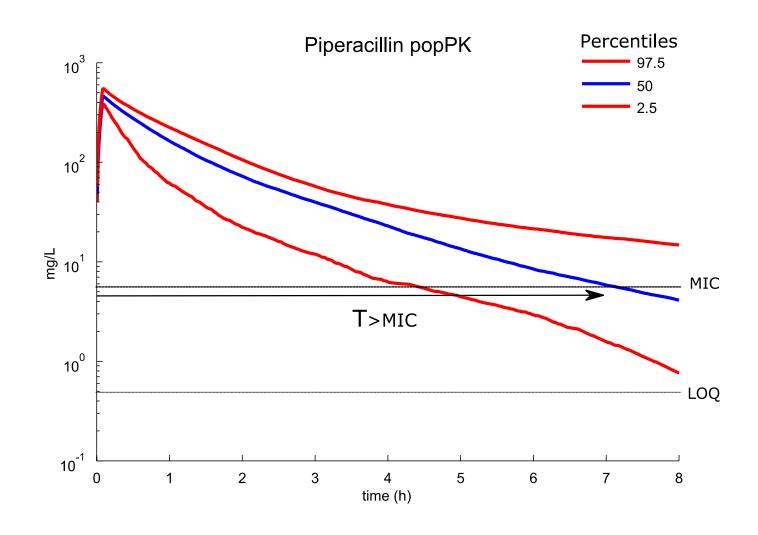
Hansen 2015

Background ICU study severe sepsis

-Does piperacillin/tazobactam (4g/0.5g) q8h result in therapeutic plasma concentrations?

20 patients, 3 blood samples per patient

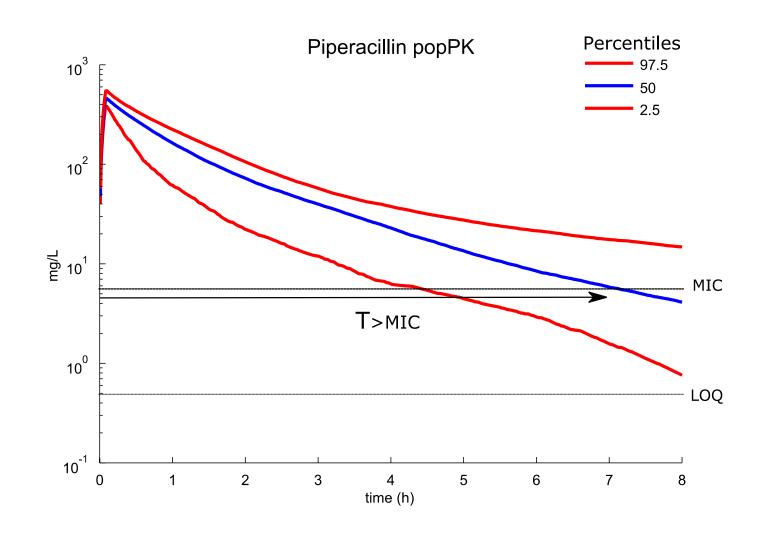
- –Population PK: 4 (5) population fixed effects + 2 IIV and 1 error
- -Fraction achieving >4xMIC at 50% of dose interval
- -Fraction achieving >1xMIC at 100% of dose interval


How to set up a sampling schedule allowing this? (Assume generally similar PK to septic schock)

Background Optimization idea

Fixed sampling at 4 and 8h, optimize 1 sample freely across 2 groups

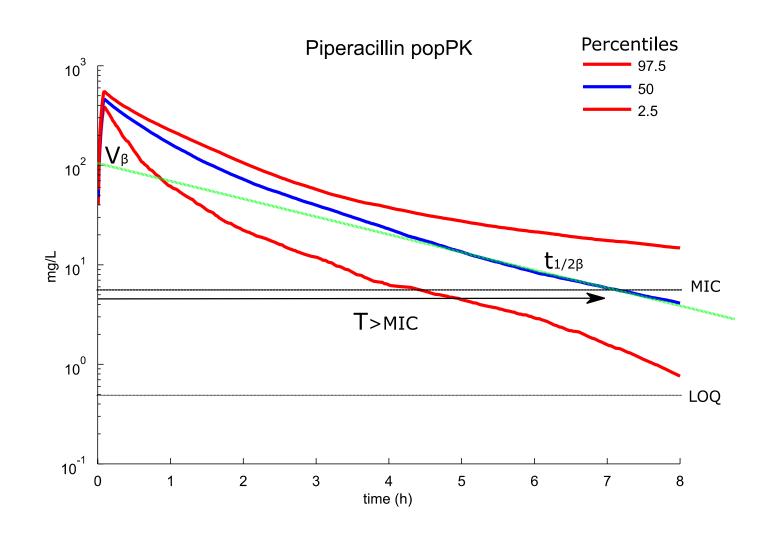
- + Simple
- 4h sample not necessarily good for popPK
- 4h sample has to be taken on time for 50% T>4xMIC
 → not convenient



Background Optimization idea

Define individual c-optimality criterion for 100% T>MIC and 50% T>4xMIC

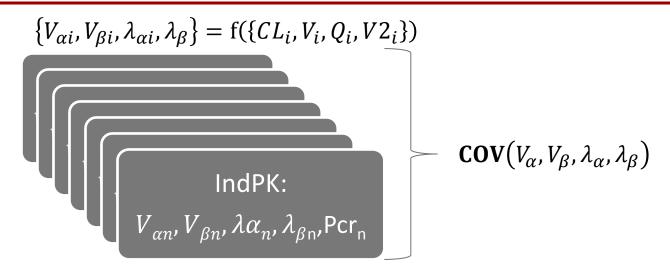
- + Optimization directly on measure of interest
- Complex
- Needs to account for MIC distribution in the design



Background Optimization idea

T>MIC can be estimated from the individual V_{β} , λ_{β} . Optimize for precision in these.

- + Independent of MIC distribution
- compartmental popPK model
- → Define compound criteria for simultaneous optimization of individual NCA and popPK



Methods Optimisation critereon

PopPK: θ, Ω, Σ simulate n

 $FIM(\{\theta, \Omega, \Sigma\}, X, \overline{Pcr})$

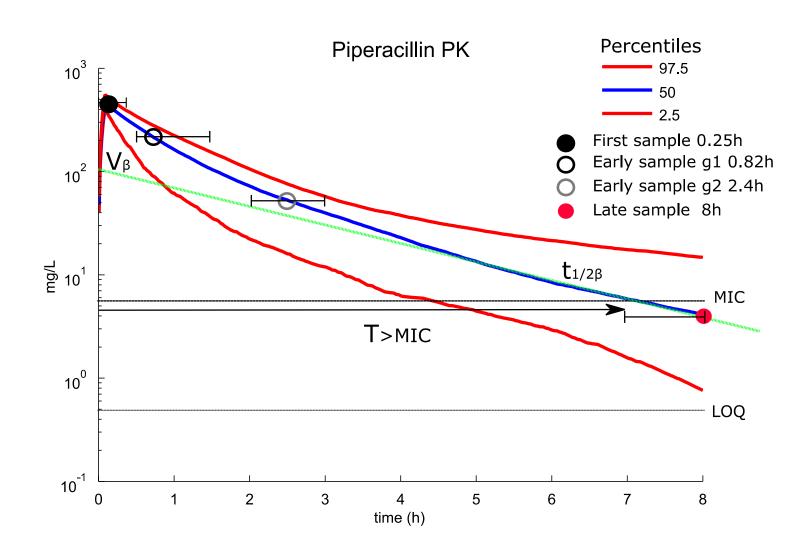
$$n \text{ FIM}(\{V_{\alpha i}, V_{\beta i}, \lambda_{\alpha i}, \lambda_{\beta i}, \Sigma\}, X, Pcr_i)$$

$$\underset{\mathbf{X}}{argmax} \left[\ln \left(\frac{\left| \mathbf{FIM} \left(\{ \mathbf{\theta}, \mathbf{\Omega}, \mathbf{\Sigma} \}, \ \mathbf{X}, \overline{\mathrm{Pcr}} \right) \right|}{\left| \mathbf{FIM} \left(\{ \mathbf{\Sigma} \}, \mathbf{X}, \overline{\mathrm{Pcr}} \right) \right|} \right) + \frac{1}{n} \sum_{i=1}^{n} \ln \left(\frac{\left(\left| \mathbf{FIM} \left(\{ V_{\alpha i}, V_{\beta i}, \lambda_{\alpha i}, \lambda_{\beta i}, \mathbf{\Sigma} \}, \mathbf{X}, \mathrm{Pcr}_{\mathrm{i}} \right) + \mathbf{COV}^{-1} \left(V_{\alpha}, V_{\beta}, \lambda_{\alpha}, \lambda_{\beta} \right) \right| \right)}{\left| \mathbf{FIM} \left(\{ V_{\alpha i}, \ \lambda_{\alpha i}, \mathbf{\Sigma} \}, \mathbf{X}, \mathrm{Pcr}_{\mathrm{i}} \right) + \mathbf{COV}^{-1} \left(V_{\alpha}, \lambda_{\alpha} \right) \right|} \right) \right]$$

Interesting part¹ of population FIM Ds optimality

MAP (Bayesian FIM²) Ds optimality³ Sampling based COV(.) for NCA parameters

Methods Optimization


20 ID, 3 sampling points per ID
2 groups, first and last sample the same time

Implemented in PopED 2.13

- -RS-LS-SG optimization
- -Reduced FIM, FO approximation
- $-100\ constant$ individual samples, p-creatinin 50-200 $\mu mol/L$, latinhypercube sampling
- BLOQ handled by setting sample information to zero
- -Pcr covariate parameter fixed

Results Sampling times

Convenience sampling windows

- 1. 10 20min
- 2. 0.5 1.5h
- 3. 2 3h
- 4. 7 8h

Results Precision and Shrinkage

	Pop PK* RSE**								
	V	Q	Vp	CL	IIV V	IIV CL	RES prop		
no spread	0.19	0.53	0.20	0.13	0.00	0.21	0.02		
spread	0.23	0.79	0.29	0.13	0.00	0.21	0.02		

Individual NCA SH***

	V_{α}	V_{β}	λ_{lpha}	λ_{eta}
no spread	0.15	0.14	0.59	0.01
spread	0.17	0.11	0.57	0.01

***Predicted from individual FIM (Kristoffersson 2015):

$$\mathbf{SH_{pred}} = 1 - \sqrt{\operatorname{diag}\left(\mathbf{I} - \left(\frac{1}{n}\sum_{i=1}^{n} (\mathbf{FIM_i} + \mathbf{Prior})^{-1}\right) \times \mathbf{Prior}\right)}$$

^{*}Covariate parameter for Pcr not included (Fixed)

^{**}PopED predicted

Conclusion/Outlook

- Compound criterion defined
- Combines population PK and individual NCA
- (Could be extended by weighting etc.)
- Group-wise optimization of sparse sampling schedule
- Predicted to achieve sufficient precision in popPK and low SH (high precision) in V_{β} , $\lambda\beta$ \rightarrow allows T>MIC determination in patient
- Study recruitment is completed and analysis to be performed this summer

Aknowledgments

Phamacometrics group
Lena Friberg

Aarhus University Hospital
Department of Infectious Diseases

Henrik Schrøder

Kristina Öbrink-Hansen

Thank you for your attention

QUESTIONS/COMMENTS?

BACKUP SLIDES

Sepsis

Sepsis

At least two SIRS criteria caused by known or suspected infection

Severe sepsis

-Sepsis with acute organ dysfunction (including hypoperfusion and hypotension) caused by sepsis

Septic shock

-Sepsis with persistent or refractory hypotension or tissue hypoperfusion despite adequate fluid resuscitation

ICU study septic shock patients

- Does piperacillin/tazobactam (4g/0.5g) q8h result in therapeutic plasma concentrations in septic shock patients?
- 15 patients included
 - 8 blood-samples collected from the 3rd consecutive dosing interval
 - 2-compartment model
- Plasma-piperacillin concentrations varied considerably and were associated with p-creatinine
- Patients with impaired renal function were more likely to achieve predefined PK/PD targets than patients with preserved or augmented renal function.
- Prolonged infusion and frequent intermittent dosing increased PTA

Compartmental to NCA

$$d = k_{12} + k_{21} + \frac{CL}{V}$$

$$\lambda_{\alpha} = \frac{1}{2} \times \left(d + \sqrt{d^2 - 4 \times k_{21} \times \frac{CL}{V}} \right)$$

$$\lambda_{\beta} = \frac{1}{2} \times \left(d - \sqrt{d^2 - 4 \times k_{21} \times \frac{CL}{V}} \right)$$

$$V_{\alpha} = V \times \frac{\lambda_{\beta} - \lambda_{\alpha}}{k_{21} - \lambda_{\alpha}}$$

$$V_{\beta} = V \times \frac{\lambda_{\alpha} - \lambda_{\beta}}{k_{21} - \lambda_{\beta}}$$