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Outline

� Background, motivation and challenges

� Generalized linear mixed models and approximations to
the information matrix

� Design selection and assessment

� Illustrative examples throughout
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Background

� Experiments are used to investigate the impact of interventions
(“treatments”) on a process or system, by applying treatments to a number
of “units”

� Design of experiments concerns the selection of treatments (settings of the
controllable variables) to be applied

� Usually, the aim of the experiment is to collect data to answer scientific
questions through the estimation of a statistical model

� The design can be selected to maximize information gained for a given level
of resource (‘optimal design’)

� Information is typically measured with respect to uncertainty about the
model and its parameters
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Motivation

(i) Increasing recognition of the need to design for experiments with non-normal
response (Woods et al., 2006)

e.g. for Generalized Linear Models in areas such as

� Science - crystallography

� Engineering - aeronautics

(ii) Often, experimental units are heterogeneous (batches or repeated
observations)

Current design methods for GLMs may be ine�cient . . .
. . . see Woods & van de Ven (2011)

� Include blocking or grouping to increase precision

� Design = selection of ‘treatments’ + allocation to blocks

� Analyse data using an appropriate model that accounts for blocking
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Engine bearings

Aeronautics - Goodrich

Aim: to study the factors a↵ecting cracking of engine bearing coatings

Controllable variables

� Spray distance

� Spray angle

� Sweep speed

Outcome
Each bearing passes (1) or
fails (0) a visual inspection

Blocks - sessions (mornings
and afternoons)
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Approximate block designs

Assume q variables with treatment vector x ∈ X = [−1,1]q and, for simplicity, all
blocks have identical fixed size m

The design can be defined as

⇠ = � ⇣1 . . . ⇣
b

w1 . . . w
b

� ,

where

� ⇣
k

= (x
k1,xk2, . . . ,xkm) ∈ Xm are distinct sets of m treatments

- support blocks

� w
k

= propn of blocks whose units receive the treatments in set ⇣
k

Clearly w
k

> 0 and ∑b

k=1wk

= 1
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Approximate block designs

Example: q = 2 variables: x1, x2; two distinct treatment-sets of size m = 2
⇣1 = �(−1,−1), (1,1)�

w1 = .5
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Generalized Linear Mixed Models

For jth unit in ith block (i = 1, . . . ,n; j = 1, . . . ,m)

y
ij

�u
i

∼ ⇡[µ(x
ij

�u
i

), 'V (x
ij

�u
i

) ]
where

� ⇡[µ,'V ] a distribution from exponential family

� Associated with ith block, vector of random e↵ects u
i

∼ N
r

(0,G)
� g{µ(x�u)} = ⌫(x�u)

� ⌫(x�u) = fT (x)� + zT (x)u linear predictor: fixed & random parts

� ⌘(x) = fT (x)� fixed part

� f ∶ X → Rp, z ∶ X → Rr are known vectors of functions

� � holds p unknown regression parameters
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Generalized Linear Mixed Models

We focus on the special case of a random intercept

� u

i

= u
i

∼ N(0,�2) is scalar, z(x) = 1, and hence

⌫(x�u) = fT (x)� + u
� Blocks have an additive (random) e↵ect on the scale of the linear predictor
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D-optimal designs

Initially, we seek a D-optimal design, ⇠∗, which maximizes

 
D

(⇠) = log �M�(⇠;✓)� ,
where ✓ = (�T ,�2)T , and M�(⇠;✓) is the information matrix for �

● we assume a particular ‘guess’ for ✓ – locally D-optimal design

For large n, approximately

�̂ ∼ N
p

��, 1
n
M�(⇠;✓)−1�

See, for example, Atkinson, Donev & Tobias (2007)
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Optimal designs

� Optimal designs need to be found using numerical optimization . . .

. . . and hence many evaluations of the information matrix and its
determinant are required

� Näıve evaluation of the information matrix will therefore be computationally
infeasible . . .

. . . and more e�cient approximations are required

We will consider analytical and computational approximations
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Information matrix approximations

Strongest results for the binary response case

● logistic regression with random intercept, u
i

= u
i

∼ N(0,�2)
1. Outcome-enumeration methods

● näıve numerical ‘brute force’

● asymptotic strong dependence (large �2)

● interpolated – well-suited for Bayesian design

2. Methods based on marginal model approximations

● marginal quasi-likelihood (MQL), generalized estimating equations (GEE)

● attenuation-adjusted MQL and GEE

● adjustment critical for performance of the designs
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Information matrix

For a GLMM, we can write

M�(⇠;✓) = b�
k=1

w
k

M�(⇣k ;✓)
M�(⇣;✓) = Ey

�−@2 log p(y�⇣,✓)
@�@�T

�
= FTE

y

�������p(y�⇣,✓)
−2 �@p(y�⇣,✓)

@⌘
��@p(y�⇣,✓)

@⌘
�T�������F

� p(y�⇣,✓) is the probability of observing y ∈ Rm from block ⇣ = (x1, . . . ,xm)
(the marginal likelihood)

� F = [f(x1), . . . , f(xm)]T (the model matrix)

� ⌘ = [⌘(x1), . . . ,⌘(xm)]T (vector of fixed parts of linear predictors)
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Outcome enumeration

For binary data and small blocks, the information matrix can be evaluated by
outcome enumeration

M�(⇣;✓) = FT

������� �
y∈{0,1}m

p(y�⇣,✓)−1 �@p(y�⇣,✓)
@⌘

��@p(y�⇣,✓)
@⌘

�T�������F

� Evaluate integrals using Gauss-Hermite quadrature

� Computationally expensive, but can be used for assessment of other methods

� For GLMMs with other conditional response distributions (e.g. Poisson),
Monte Carlo approximations are possible (but even more expensive)
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Quasi-likelihood approximations (I)

Marginal quasi-likelihood (MQL)

Mmarg
� (⇠,✓) = b�

k=1
w
k

FT

k

V −1
k

F
k

● F
k

, Z
k

are respectively the fixed and random e↵ects model matrices for ⇣
k

● V
k

= V(⇣
k

,✓) is determined from V(⇣,✓) =W (⇣,✓)−1 + Z(⇣)GZ(⇣)T
● W (⇣,✓) is the diagonal matrix with entries v(x1;0,�), . . . , v(xm;0,�)
● arises from small-u Taylor expansion of the model (Breslow & Clayton, 1993)

● derivation relies on intermediate approximation

E(y
ij

) ≈ g−1{f T (x
ij

)�}
● for design using similar methods, see Moerbeek & Maas (2005)
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Quasi-likelihood approximations (II)

Adjusted marginal quasi-likelihood (AMQL)

For logistic models, a better approximation is

E(y
ij

) ≈ g−1{f T (x
ij

)�adj}
where �adj. = � (1 + c2�2)−1�2 , ✓adj. = (�adj.,�

2)T ,

and c = 15√3�(16⇡) see e.g. Breslow and Clayton (1993)

Marginal model for mean is approximately logistic with attenuated parameters

To obtain e�cient designs using MQL, we found it critical to adjust for this
attenuation when using MQL. Define:

MAMQL
� (⇠;✓) =Mmarg

� (⇠;✓adj)
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Example 1: binary data (1)

m = 4, x = (x1, x2)
Model: ⇡ = Bernoulli, g = logit

⌫(x�u) = �0 + �1x1 + �2x2 + u
Compare locally optimal designs from AMQL method and outcome enumeration.

Parameter scenarios

Want to investigate performance of methods as intra-block correlation increases
- better to specify parameter scenarios on the marginal scale (�adj,�

2) in this case
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Example

E�ciency, e↵(⇠;✓) = {�M�(⇠;✓)�� sup⇠′ �M�(⇠′;�)�}1�p × 100%
�2

�T

adj Approx 2 5 10 20 50

(0,1,1) AMQL 100 100 100 100 100

(0,3,2) AMQL 99.9 100.0 99.9 99.4 95.2

(1,2,3) AMQL 99.1 96.6 92.1 84.8 73.5

(1,4,4) AMQL 100.0 99.9 99.4 98.2 97.2

(1,3,3) AMQL 99.5 100.0 99.3 97.9 95.1

(1,2,2) AMQL 100.3 100.2 98.5 96.1 92.6

(2,1,3) AMQL 99.1 96.6 92.1 84.8 78.0

Table: E�ciencies (%) of adjusted MQL designs, compared to the näıve outcome

enumeration design
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Outcome enumeration - asymptotic

Asymptotic approximations (large �2)
● Study the limit �2 →∞, with appropriate regularity conditions on the design
and on �. Focus on a single block ⇣ = (x1, . . . ,xm).
● � = �att

√
1 + c2�2, with �att fixed

● allow the x

j

to vary

● For all j , either ⌘∗
j

= fT (x
j

)�att is constant or there is l with ⌘∗
l

constant

and ⌘∗
j

− ⌘∗
l

= o(�−1).
● Approximations can be derived for the likelihood and derivatives, and
substituted into our outcome enumeration formula.

● The above framework gives a better approximation to M�(⇣;✓) than x

j

fixed
when ⌘∗

l

≈ ⌘∗
j

(j ≠ l)
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Example

E�ciency, e↵(⇠;✓) = {�M�(⇠;✓)�� sup⇠′ �M�(⇠′;�)�}1�p × 100%
�2

�T

adj Approx 2 5 10 20 50

(0,1,1) AMQL 100 100 100 100 100
Asymptotic - - - 100.0 94.8

(0,3,2) AMQL 99.9 100.0 99.9 99.4 95.2
Asymptotic - - - 96.4 97.4

(1,2,3) AMQL 99.1 96.6 92.1 84.8 73.5

Asymptotic - - - 93.5 98.3

(1,4,4) AMQL 100.0 99.9 99.4 98.2 97.2
Asymptotic - - - 97.1 98.2

(1,3,3) AMQL 99.5 100.0 99.3 97.9 95.1
Asymptotic - - - 97.1 98.2

(1,2,2) AMQL 100.3 100.2 98.5 96.1 92.6
Asymptotic - - - 95.1 97.9

(2,1,3) AMQL 99.1 96.6 92.1 84.8 78.0

Asymptotic - - - 95.0 98.0

Table: E�ciencies (%) of adjusted MQL and asymptotic (large �2
) designs, compared to

the näıve outcome enumeration design
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Interpolation (1)

Suppose that � ∶ D → R is an expensive-to-evaluate function.

Often it is faster to use a cheaper numerical approximation, constructed as follows:

� Evaluate �(d1), . . . ,�(dn) for a set of training points, d
i

∈ D
� Fit a model, �̂, that interpolates the data

� We say that �̂ is an emulator of �

Then �̂(d) can be used to predict �(d) for d outside of the training set.

[For multivariate d, we use space-filling designs and Gaussian process models, c.f.

computer experiments literature, e.g. Santner et al., 2003]
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Interpolation (2)

Toy example
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An emulator built using a training set of 5 points
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Parameter dependence

Optimal designs for estimating � depend on the unknown parameters...
...overcome this with a pseudo-Bayesian D-optimal design ⇠∗, maximizing

 
D

(⇠) = �
⇥
log �M(⇠;✓)�dG(✓)

where G is a distribution across the parameter space ⇥

Approximation of objective function
is via numerical quadrature
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Outcome enumeration - interpolated

For random intercept logistic regression, we can write the information matrix for
block ⇣ as

M(⇣;✓) = FTW (⌘,�2)F ,

where W (⌘,�2) is a function of p
y

= p(y�⇣,✓) = p(y�⌘,�2) and @p
y

�@⌘
j

,
y ∈ {0,1}m, j = 1, . . . ,m.

To approximate the information matrix, we build an emulator for W .

� As the emulator is in terms of ⌘, we can e�ciently produce Bayesian designs

� To obtain a highly accurate approximation, we use a large training set and
compactly-supported covariance functions

Tim Waite (U. Manchester) Design for GLMMs 19 Feb 2015 24 / 29



Example 2: binary data (1)

Set m = 4, and x = (x1, x2) (two variables)

Model: ⇡ = Bernoulli, g = logit
⌫(x�u) = �0 + �1x1 + �2x2 + u

Prior: �0 ∼ U(−0.5,0.5) �1 ∼ U(3,5)
�2 ∼ U(0,10) �2 = 5

Find pseudo-Bayesian D-optimal designs, using a Latin hypercube sample,
�(1), . . .�(50) from [−0.5,0.5] × [3,5] × [0,10] to approximate the integral:

 
D

(⇠) ≈ 50�
s=1

1

50
log �M�(⇠;✓s

)�
with ✓

s

= (�(s)T ,5)T .
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Example 2: binary data (2)
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Example 2: binary data (3)

Block weights
Design method ● × Bayes e�ciency (%) Time (s)
Outcome enum. 0⋅744 0⋅256 100⋅00 1⋅65×107
Interpolation 0⋅749 0⋅251 99⋅96 5⋅19×106

AMQL 0⋅748 0⋅252 99⋅79 1⋅80×105
AGEE 0⋅466 0⋅534 97⋅94 2⋅20×105

Bayes-e↵(⇠;✓) = [exp{ 
D

(⇠)} � exp{ 
D

(⇠�)}]1�p
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Conclusions

� A range of further examples and approximations studied

� For small �2

� Most approximations give similar designs� Performance is comparable to outcome enumeration

� Simulation results suggest small-sample ranking and performance of designs
is consistent with these (large n) asymptotic results

� For (very much) larger �2

� Both AMQL and AGEE can perform poorly, compared to outcome
enumeration� Asymptotic approximations may be more e↵ective

Waite, T.W., & Woods, D.C. (2015). Designs for generalized linear models with random block

e↵ects via information matrix approximations. Biometrika, accepted (arXiv:1412.4355).
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Related work

� Further design problems

� More complex random e↵ect structures (e.g. split-plots)� Estimation of variance components� Prediction of random e↵ects (HGLMs)

� Extensions of computational methodology (e.g. interpolation) to design for
other nonlinear models

� e.g., see Overstall & Woods (2015), (tech. rep., arXiv:1501.00264)

� Applications, e.g. in Biostatistics
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Back-up slides

Further details of asymptotics
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Define two partitions of the indices {1, . . . ,m}:
● S0,1 = {i ∶ yi = 0,1 respectively}
● N (j), Z(j), P(j) the set of indices l such that
lim�→∞[⌘∗

l

− ⌘∗
j

] < 0, = 0 and > 0, respectively.
Two important subclasses of outcomes y = (y1, . . . , ym)T :● increasing : ∃j ′ with

⌘∗
j

< ⌘∗
j

′ �⇒ y
j

= 0
⌘∗
j

> ⌘∗
j

′ �⇒ y
j

= 1
● quasi-increasing : ∃j ′ with N (j ′) ⊆ S0, P(j ′) ⊆ S1.
● contributions to M(⇣;✓) from these classes of y are O(�−1) and O(�−2)
● contributions from other outcomes negligible: O(�−1e−�B), B > 0.
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Theorem: approximation of the likelihood

Suppose that the outcome is quasi-increasing:

(i) If �S0 ∩Z(j ′)� = 0 or �S1 ∩Z(j ′)� = 0, as �2 →∞,

P(Y �✓, ⇣) = max�0,��−max

j∈S0 {⌘j��}� −��−min

j∈S1{⌘j��}�� +O(�−1)
(ii) If �S0 ∩Z(j ′)� ≥ 1 and �S1 ∩Z(j ′)� ≥ 1, then as �2 →∞,

P(Y �✓, ⇣) = �(⌘
j

′��)
� � ∞

−∞ {1 − h(t)}�S0∩Z(j
′)�h(t)�S1∩Z(j′)�dt

+ �
l∈Z(j′)

O(�
lj

′��) +O(�−2)
where �

lj

= ⌘
l

− ⌘
j

, and h is the logistic function.
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	Appendix

