Optimal sampling times for pharmacokinetic modelling of a cocktail of phenotyping drugs

TT Nguyen¹, H Bénech², M Delaforge², A Pruvost², F Mentré³, N Lenuzza¹

¹CEA, LIST, Data Analysis and Systems Intelligence Laboratory, Gif-sur-Yvette, France, ²CEA, DSV, iBiTecS, Gif-sur-Yvette, France, ³IAME, UMR 1137, INSERM - University Paris Diderot, Paris, France

11 September 2014, Basel

Workshop of Population Optimum Design of Experiments PODE 2014

Background

Cocktails of phenotyping drugs are of high interest to determine activity of enzymes responsible for drug metabolism and pharmacokinetics (PK) [1]

CIME (MEtabolic Identity Card) cocktail: developed by CEA [2]

Pilot phase 1 study <u>CIME1</u>: showing the safety of the cocktail [3]

[1] Fuhr et al. *Clin. Pharmacol. Ther.*, 2007. [3] Lenuzza et al. *Eur. J .Drug Metab. Ph.*, in revision. [2] Videau et al. Rapid Commun. Mass Spectrom., 2010.

Thu Thuy Nguyen – PODE 2014

Background

Phenotyping indexes (PI) for assessment of metabolizer status

- AUC of substrates or ratio AUC substrate/AUC metabolite [1]
- derived from a few samples using nonlinear mixed effect models (NLMEM) and maximum *a posteriori* (MAP) estimation of individual parameters [2]

Importance of choice of design on precision of parameters

- Inspection of covariates
- Identification of sub-populations requiring dose adjustment
- Treatment individualisation

[1] EMA. *Guideline on the Investigation of Drug Interactions*, 2012.[2] Smith and Vincent. *Clin. Pharmacol. Ther.*, 2010.

Background

Approach for design evaluation and optimisation:

based on the Fisher information matrix (FIM) in NLMEM

- design for estimation of population parameters -> population FIM (M_{PF}) [1], implemented in several design tools [2]
- design for MAP estimation of individual parameters -> Bayesian FIM (M_{BF}) [3], recently implemented in PFIM 4.0 [4]

[1] Mentré et al. *Biometrika*, 1997.[2] Nyberg et al. *Br. J. Clin. Pharmacol.*, 2014.

[3] Combes et al. *Pharm. Res.*, 2012.[4] www.pfim.biostat.fr

Objectives

To design a phenotyping study with two molecules of the CIME cocktail

- Digoxin (probe for P-glycoprotein)
- Midazolam and its metabolite 1-OH-midazolam (probe for CYP3A activity)
- **1.** To propose and evaluate by simulation an optimal compound design for both molecules (based on results of CIME1 study)
- 2. To study the influence of weights on the optimal compound design
- **3.** To optimise sampling windows for more flexibility in experiments

CIME1 study

Data: 10 healthy volunteers, rich PK profiles with 18 samples/subject

Phenotyping indexes

Digoxin: AUC

Midazolam: Ratio AUC parent/metabolite

Optimal compound design - Methods

Notation

- Identical elementary design $\xi = (t_1, ..., t_n)$ in all subjects
- Population parameters Ψ_m of each molecule m (m=1,...,M)

D-optimality

• D-criterion $\Phi^{D} = \det(M_{PF}(\Psi_{m},\xi))^{1/P_{m}}$

Compound D-optimality

$$\xi^{CD} = Arg \max_{\xi} \sum_{m=1}^{M} \alpha_{m} \log\left(\det\left(M_{PF}\left(\Psi_{m},\xi\right)\right)^{1/P_{m}}\right)$$
[1]

where
$$P_m$$
 = length(Ψ_m)

where α_m is the weight for each molecule m

- Implementation in R based on PFIM 4.0 [2]
- Application to design a phenotyping study with 2 molecules
 - 40 subjects, sparse design of n = 6 samples/subject ≤ 48h

•
$$P_{\text{Digoxin}} = 9 \& P_{\text{Midazolam}} = 16, \ \alpha_{\text{Digoxin}} = 1/3 \& \alpha_{\text{Midazolam}} = 2/3$$

[1] Atkinson. J. Stat. Plan. Inference, 2008.

[2] www.pfim.biostat.fr

Optimal compound design - Methods

Evaluation by clinical trial simulation (CTS)

- Simulation
 - 200 datasets of 40 subjects for each molecule with the optimal compound ξ^{CD}
 - Analysis by MONOLIX 4.2.2 [1,2]

Comparison

	Simulation (CTS)	Prediction (PRED)				
Population parameters	RSE _{P-CTS} = SD of population estimates	$RSE_{P-PRED} = \sqrt{diag(M_{PF}^{-1})}$				
Individual parameters estimated by MAP	RSE _{I-CTS} given by MONOLIX	$RSE_{I-PRED} = \sqrt{diag(M_{BF}^{-1})}$				
Derived phenotyping indexes	RSE derived by Delta-method [3]					

[1] Kuhn and Lavielle. *Comput. Stat. Data Anal.*, 2005. [3] Oehlert., *Am. Stat.*, 1992.[2] www.lixoft.eu

Optimal compound design - Results

Molecule	0.25	0.75	1	1.5	2	2.5	4	5	6	10	12	24	48
Digoxin	X			X	X		X			X			X
Midazolam	X	X	X			X			X		X		
Compound design	X		X			X		X			X		X

- ξ^{CD} = (0.25, 1, 2.5, 5, 12, 48h) instead of 11 samples if optimising separately
- Little loss of efficiency compared to the separately optimised designs: Efficiency(ξ^{CD}) = 96% for Digoxin and 91% for Midazolam

Optimal compound design - Results

 Reasonable RSE for derived phenotyping indexes: close results between CTS and FIM predictions

Individual parameters estimated by MAP

MIDAZOLAM/1-OH-MIDAZOLAM

DIGOXIN

Evaluation of weight influence on compound design – Methods

Compound D-optimal design

$$\xi^{CD} = Arg \max_{\xi} \sum_{m=1}^{M} \alpha_m \log \left(\det \left(M_{PF} \left(\Psi_m, \xi \right) \right)^{1/P_m} \right) \quad \text{where } \mathsf{P}_m = \text{length}(\Psi_m)$$

Multi-response D-optimal design

$$\xi^{MR} = Arg \max_{\xi} \prod_{m=1}^{M} \det \left(M_{PF} \left(\Psi_{m}, \xi \right) \right)^{1/P} = Arg \max_{\xi} \sum_{m=1}^{M} \log \left(\det \left(M_{PF} \left(\Psi_{m}, \xi \right) \right)^{1/P} \right)$$

where $\mathsf{P} = \Sigma_{\mathsf{m}} \operatorname{length}(\Psi_{\mathsf{m}})$

$$\Rightarrow \xi^{CD} = \xi^{MR} \text{ for } \alpha_{m} = P_{m}/P$$

Evaluation for different values of α_{Digoxin} **from 0 to 1**

- RSE (AUC Digoxin) and RSE (ratio AUC Midazolam/metabolite)
- For 40 subjects, sparse design of n = 6 or 5 samples/subject $\leq 48h$

Evaluation of weight influence on compound design – Results

ξ^{CD*}: α_{Digoxin} = 1/3 ≈ 0.33

ξ^{MR}: $α_{\text{Digoxin}} = 9/25 \approx 0.36$

Thu Thuy Nguyen – PODE 2014

Sampling windows - Methods

Step 1: For each molecule, determine the windows ξ^{W1} around ξ^{CD} by recursive random sampling [1]

Required efficiency for each design ξ^w composed of a window and remaining fixed samples $det(M_{PF}(\Psi, \xi^{w}))^{1/P}$

$$Eff(\xi^{w}) = \frac{\det(M_{PF}(\Psi, \xi^{w}))^{1/P}}{\det(M_{PF}(\Psi, \xi^{CD}))^{1/P}} \ge Eff_{0} = 90\%$$

Step 2: Evaluate by Monte-Carlo simulation & adjust the joint windows ξ^{W1} [2]

Check if 90% of the 100 randomly simulated designs have joint efficiency ≥ Eff₀; If not, reduce the length of all windows simultaneously by a certain %

\Rightarrow Final windows ξ^{W} = intersection of population window designs of 2 molecules

[1] Foo et al. *Pharm. Stat.*, 2012.

[2] Ogungbenro and Aarons. J. Biopharm. Stat., 2009.

Sampling windows - Methods

Evaluation of the performance of ξ^w for MAP estimation

- Simulation of 1000 individual designs within ξ^W and 1000 respective datasets for each molecule
- Comparison of individual RSE by CTS vs predictions by FIM

Sampling windows - Results

After Step 1: ξ^{W1} = {[0.17,0.47],[0.87,2.01],[2.24,4.38],[4.25,10.43],[9.02,39.54],[39.71,48]}

After Step 2: ξ^w = {[0.19,0.40],[0.92,1.48],[2.38,3.38],[4.51,7.94],[9.93,27.04],[43.21,48]}

Thu Thuy Nguyen – PODE 2014

Sampling windows - Results

Evaluation by CTS for MAP estimation of individual parameters

Thu Thuy Nguyen – PODE 2014

Discussion

Summary

- By combining NLMEM, compound design and sampling windows based on FIM, we were able to determine sparse samples allowing correct estimation of parameters for both molecules
- This approach will be extended to efficiently design studies with full CIME cocktail including more drugs [1,2]
 - Requiring a priori knowledge of models & parameters => sensitivity analyses

Prospects

- Development of an optimality criterion combining population and Bayesian FIM
- Robust design for MAP estimation of individual parameters

^[1] Lenuzza et al. *Eur. J .Drug Metab. Ph.,* in revision.

^[2] Videau et al. Rapid Commun. Mass Spectrom., 2010.

Thank you for your attention !

BACK-UP Sampling windows

Methods

- Input
 - The compound optimal design
 - Required efficacy of the windows $Eff(\xi^{\omega}) = \frac{\det(M_{PF}(\Psi, \xi^{\omega}))^{1/P}}{\det(M_{PF}(\Psi, \xi^{D}))^{1/P}} \ge Eff_{0} = 90\%$ compared to the discrete optimal times
- Step 1: Determine windows around each optimal time by recursive random sampling [1]
 - Number of iterations K=100
 - Initialisation $(t^{(0)}_1, \ldots, t^{(0)}_n) = (t^D_1, \ldots, t^D_n)$
 - For each iteration from 1 to K, for each sampling *j* from 1 to *n*: determine $a_j^{(iter)}$ and $b_j^{(iter)}$ around $t_j^{(iter-1)}$ such as for all times T in $[a_j^{(iter)}, b_j^{(iter)}]$, the required efficacy is satisfied for $\xi^{(iter)} = (t^{(iter)}, \dots, t^{(iter)}) = T, T, t^{(iter-1)})$
 - Randomly generate $t_i^{(iter)}$ from $Unif[a_i^{(iter)}, b_i^{(iter)}]$

Sampling windows ξ^{W1} obtained from the mean of the K lower & upper bounds [9] Foo et al. *Pharm. Stat.*, 2012.

BACK-UP Sampling windows

- Step 2: Evaluate/adjust the joint windows ξ^{W1}

 - Simulation of *H*=100 individual designs ξ_h within ξ^{W1} Joint efficacy $Eff(\xi^W) = \frac{\det(M_{PF}(\Psi,\xi^W))^{1/P}}{\det(M_{PF}(\Psi,\xi^D))^{1/P}}$ where $FIM(\xi^W) = \frac{1}{H} \sum_{h=1}^{H} M_{PF}(\Psi,\xi_h)$
 - Check if 90% of the simulated designs have efficacy $> Eff_0$; •

If not, we reduce the length of all windows simultaneously by a certain % until the required efficacy level is obtained [1]

- Final sampling windows ξ^{W} = intersection of population window designs of \Rightarrow two molecules
- Evaluation of the performance of ξ^{W} for MAP estimation
 - Simulation of 1000 individual designs within ξ^{W} and 1000 respective datasets for each molecule
 - Comparison of individual RSE and shrinkage by CTS vs predictions by FIM •

[1] Ogungbenro and Aarons. J. Biopharm. Stat., 2009.