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Introduction 
• Multiple Model Optimal (MMOpt) Design 

– Captures essential elements of Bayesian Experiment Design without the 

excessive computation 

– Minimizes a recent theoretical overbound on the Bayes Risk (Blackmore et. al. 

2008 [4]) 

– Intended for multiple model (MM) parametrizations which form the  basis of 

the USC BestDose software (corresponds to the support points in a 

nonparametric population model ) 

– Has several advantages relative to D-optimality and other criteria based on 

the asymptotic Fisher Information matrix for nonlinear problems 

• Contribution of present paper, since the last PODE, is to generalize MMOpt 

by introducing a weighting into the Bayes Risk Cost 

– New result shows that simple analytical overbound of [4] is preserved in the 

weighted case 

– Weights allow MMOpt experiment design to address many problems of 

practical interest (AUC estimation, what best future dose to give, etc.) 

• Numerical examples demonstrate MMOpt on several relevant PK problems 
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D-Optimal Design for Nonlinear Problems 

• D-optimality (traditional) maximizes the determinant of the Fisher 

Information Matrix (Fedorov 1972 [20], Silvey 1980 [19] ) 

– max |M|, where M is Fisher Information Matrix, and |(.)| is determinant 

– Useful tool has become standard in design of clinical experiments 

• For nonlinear problems, MMOpt offers several advantages relative to D-

optimality and other criteria based on the asymptotic Fisher Information 

matrix 

– Avoids circular reasoning associated with having to know a patient's 

true parameters in order to design an experiment 

– Avoids using an asymptotic information measure when placing only a 

small number of samples 

 

• To robustify D-optimal design, an expectation is taken with respect to 

certain functions of prior information giving rise to ED, EID, and ELD (or 

API) optimal designs 

– Chaloner [13], Pronzato [14][15], Tod [16], D’Argenio [17] 
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Definition of ED, EID, API 

• All above design metrics require Fisher Matrix M to be 

nonsingular, and hence require at least p samples to be taken, 

where p=# parameters 
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Multiple Model Optimal Design 
• USC BestDose software [3] is based on a multiple model (MM) 

parametrization of the Bayesian prior (i.e., discrete support points in the 

nonparametric population model) 

• Experiment design for MM (i.e., discrete) models is a subject found in 

classification theory  

– How do we sample the patient to find out which support point he best 

corresponds to? 

– Classifying patients is fundamentally different from trying to estimate 

patient’s parameters 

 

• Treating MM experiment design in the context of classification theory leads 

to the mathematical problem of minimizing Bayes risk (Duda et. al. [21]) 
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– Nonparametric Maximum Likelihood (NPML) 

estimation of a population model has the form 

of a MM prior (Mallet [5], Lindsay [6]). 

– Software for population NPML modeling is 

available, e.g.,  NPEM (Schumitzky [7][11]), 

NPAG (Leary [8], Baek [9]), USC*PACK (Jelliffe 

[10], and Pmetrics in Bestdose [3]. 
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• Model Response Separation r(t) is the 

separation between two model responses at a 

given time t 

 

 

•Defines natural statistic for discriminating 

between two models 

 

• Bayes Risk is shown in gray area 

Model Response Separation r(t) 
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MMOpt Example: 4-Models (1/2)  
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• Grid points t=0.05 apart 

• Designs optimized over time grid 

Model Parameters 

# a b 

1 2 2.625 

2 1    0.6 

3 0.7    0.6 

4 0.5    0.6 
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Design Metric 2-Sample Times Bayes Risk Bayes Risk 

99%Conf * 

MMOpt 0.45 1.4 0.32839 +/- 0.00070 

ED 0 0.8 0.37028  +/- 0.00070 

EID 0 1 0.36044  +/- 0.00072 

API 0 0.95 0.36234  +/- 0.00072 

Design Metric 3-Sample Times Bayes Risk Bayes Risk 

99% Conf * 

MMOpt 0.45 1.4 1.4 0.28065 +/- 0.00067 

ED 0 0.7 0.9 0.32048 +/- 0.00067 

EID 0 0 1 0.36034 +/- 0.00072 

API 0 0.85 0.105 0.3099 +/- 0.00069 

MMOpt Example: 4-Models (2/2) 

• MMOpt has smallest Bayes Risk of all designs studied 

* evaluated based on Monte Carlo analysis using 1,400,000 runs per estimate 
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ED EID API MMOpt 
Invariant under regular linear 

reparametrization* 

Yes Yes 

 

Yes 

 

Yes 

 

Invariant under regular nonlinear 

reparametrization* 

No No 

 

Yes Yes 

 

Allows taking fewer than  p 

samples, p= # of parameters 

No 

 

No 

 

No 

 

Yes 

 

Can handle heterogeneous 

model structures 

No 

 

No 

 

No 

 

Yes 

 

Gives known optimal solution to 

2-model example* 

No 

 

No 

 

No 

 

Yes 

 

Captures main elements of 

minimizing Bayes risk 

No 

 

No 

 

No 

 

Yes 

 

Comparison Table 

*Proved in Bayard et. al., PODE 2013 [23] 
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Weighted MMOpt 
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Applications of MMOpt  

• Three Numerical Examples 

– PK Estimation (unweighted MMOpt) 

– AUC Estimation (weighted MMOpt) 

– AUC Control (weighted MMOpt) 

• Results will be compared to ED optimal design 

EDopt  

– Also compared to Bayes optimal design Bopt when 

computationally feasible to do so 
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Model Parameters 

# K V 

1 0.090088 113.7451 

2 0.111611    93.4326 

3 0.066074    90.2832 

4 0.108604    89.2334 

5 0.103047   112.1093 

6 0.033965    94.3847 

7 0.100859   109.8633 

8 0.023174   111.7920 

9 0.087041   108.6670 

10 0.095996   100.3418 

PK Population Model with 10 Multiple Model 

Points - First-Order PK Model 

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5
All subject responses

Time (hr)

C
o
n
c
e
n
tr

a
ti
o
n

0 5 10 15 20
0

50

100

150

200

250

300

350

400
Dose Input

Time (hr)

U
n
it
s

Dose input  = 300 units for  
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Model Responses 

• Grid points 15 min apart 

• MMOpt optimized over time grid 
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Unweighted MMOpt for PK Estimation 

• Summary of optimal 1,2 and 3 sample designs applied to PK Estimation 

• 1 Sample Design: MMOpt performance equals Bayesian optimal design (both 

have Bayes Risk of 0.5474).  

• MMOpt performance improves on EDopt design for 2 and 3 sample designs 

– 2 Sample Design: Bayes Risk of 0.29 versus 0.33 

– 3 Sample Design: Bayes Risk of 0.23 versus 0.26 

• All results are statistically significant to p<0.0001 
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Weighted MMOpt for AUC Estimation 
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Weighted MMOpt for AUC Estimation (Cont’d) 

• Summary of optimal 1,2 and 3 sample designs applied to AUC estimation 

• 1 Sample Design: Weighted MMOpt performance approximates that of the 

Weighted Bayesian optimal design (RMS error of 6.98 versus 5.9 AUC units)  

• MMOpt performance improves on EDopt design  

– 2 Sample Design: RMS error of 1.84 versus 2.21 (units of AUC) 

– 3 Sample Design: RMS error of 1.40 versus 1.89 (units of AUC) 

• All results are statistically significant to p<0.0001 
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Weighted MMOpt for AUC Control 
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Weighted MMOpt for AUC Control (Cont’d) 

• Summary of optimal 1,2 and 3 sample designs applied to AUC control 

• 1 Sample Design: weighted MMOpt performance approximates that of the 

weighted Bayesian optimal design (RMS error of 3.62 versus 3.77 AUC units)  

• MMOpt performance improves on EDopt design for 2 and 3 sample designs 

– 2 Sample Design: RMS error of 2.11 versus 2.62 (units of AUC) 

– 3 Sample Design: RMS error of 1.70 versus 2.42 (units of AUC) 

• All results are statistically significant to p<0.0001 
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Summary 

• Multiple Model Optimal Design (MMOpt) provides an alternative 
approach to designing experiments 
– Particularly attractive for Nonparametric Models (MM discrete prior) 

– Based on true MM formulation of the problem (i.e., classification theory) 

– Has several advantages relative to ED, EID and API (last year’s PODE [23]) 

– Based on recent theoretical overbound on Bayes Risk (Blackmore et. al. 
2008 [4]) 

• Introduced Weighted version of MMOpt which minimizes upper 
bound on the Weighted Bayes Risk 
– Allows specification of costs for each type of classification error 

– Preserves overbound property so that weighted MMOpt designs are as 
straightforward to compute as unweighted MMOpt designs 

– Examples show that weighted MMOpt performance improves on EDopt, and 
compares favorably to the theoretically best performance of the weighted 
Bayes optimal classifier 

• MMOpt captures essential elements of Bayesian Experiment 
Design without the excessive computation 
– Bayesian formulation of design problem for multiple model problems 

– Allows approximate pre-posterior analysis “without tears” 

– To be included in a future release of the USC BestDose software [3] 
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