### Experiment Design Based on Bayes Risk and Weighted Bayes Risk with Application to Pharmacokinetic Systems

David S. Bayard<sup>\*1</sup>, Roger Jelliffe<sup>\*2</sup> and Michael Neely<sup>\*3</sup>

Laboratory of Applied Pharmacokinetics Children's Hospital Los Angeles Los Angeles, CA, USA

Supported by NIH Grants GM 068968 and HD 070886 Questions? David Bayard (dbay007@earthlink.net)

\*<sup>1,2</sup> Scientific consultants to the CHLA Laboratory of Applied Pharmacokinetics
 \*<sup>3</sup> Director of the CHLA Laboratory of Applied Pharmacokinetics

# Introduction

#### • Multiple Model Optimal (MMOpt) Design

- Captures essential elements of Bayesian Experiment Design without the excessive computation
- Minimizes a recent theoretical overbound on the Bayes Risk (Blackmore et. al. 2008 [4])
- Intended for multiple model (MM) parametrizations which form the basis of the USC BestDose software (corresponds to the support points in a nonparametric population model)
- Has several advantages relative to D-optimality and other criteria based on the asymptotic Fisher Information matrix for <u>nonlinear problems</u>
- Contribution of present paper, since the last PODE, is to generalize MMOpt by introducing a weighting into the Bayes Risk Cost
  - New result shows that simple analytical overbound of [4] is preserved in the weighted case
  - Weights allow MMOpt experiment design to address many problems of practical interest (AUC estimation, what best future dose to give, etc.)
- Numerical examples demonstrate MMOpt on several relevant PK problems

• Dynamic Model and Measurements

 $\dot{x}(t) = f(x(t), d(t), \theta)$  State x, Input d, Parameter  $\theta \in R^p$  $\eta_k = h(x(t_k), \theta)$ , System output at time  $t_k$  $y_k = \eta_k + \sigma_k n_k$ , Noisy measurement at time  $t_k$  $n_k \sim N(0, 1)$ , Gaussian measurement noise  $\xi = \{t_1, ..., t_n\}$ , Experiment design (optimal sampling)

• D-Optimal Design

 $\max_{\xi} |M|$ 

where the Fisher Information Matrix M is given by,

$$M(\theta,\xi) = \sum_{k=1}^{n} \frac{1}{\sigma_k^2} \left[ \frac{\partial \eta_k}{\partial \theta} \frac{\partial \eta_k}{\partial \theta^T} \right] \Big|_{\theta = \overline{\theta}}$$

Herein, M(θ, ξ) is assumed to be a function of θ

 (i.e., nonlinear problems)

## **D-Optimal Design for Nonlinear Problems**

- D-optimality (traditional) maximizes the determinant of the Fisher Information Matrix (Fedorov 1972 [20], Silvey 1980 [19])
  - max |M|, where M is Fisher Information Matrix, and |(.)| is determinant
  - Useful tool has become standard in design of clinical experiments
- For nonlinear problems, MMOpt offers several advantages relative to Doptimality and other criteria based on the asymptotic Fisher Information matrix
  - Avoids circular reasoning associated with having to know a patient's true parameters in order to design an experiment
  - Avoids using an asymptotic information measure when placing only a small number of samples
- To robustify D-optimal design, an expectation is taken with respect to certain functions of prior information giving rise to ED, EID, and ELD (or API) optimal designs
  - Chaloner [13], Pronzato [14][15], Tod [16], D'Argenio [17]

## **Definition of ED, EID, API**

#### • Robust D-Optimal Designs

ED:  $\arg \max_{\xi} E_{\theta} \left( |M| \right)$ EID:  $\arg \min_{\xi} E_{\theta} \left( \frac{1}{|M|} \right)$ API:  $\arg \max_{\xi} E_{\theta} \left( \log |M| \right)$ where,  $\theta \in \mathbb{R}^{p}$  - Parameter Vector  $\eta = \{t_{1}, ..., t_{n}\}$  - Experiment design

M - Fisher Information Matrix

 All above design metrics require Fisher Matrix M to be nonsingular, and hence require at least p samples to be taken, where p=# parameters

## **Multiple Model Optimal Design**

- USC BestDose software [3] is based on a multiple model (MM) parametrization of the Bayesian prior (i.e., discrete support points in the <u>nonparametric population</u> model)
  - Nonparametric Maximum Likelihood (NPML) estimation of a population model has the form of a MM prior (Mallet [5], Lindsay [6]).
  - Software for population NPML modeling is available, e.g., NPEM (Schumitzky [7][11]), NPAG (Leary [8], Baek [9]), USC\*PACK (Jelliffe [10], and **Pmetrics** in Bestdose [3].



- Experiment design for MM (i.e., discrete) models is a subject found in classification theory
  - How do we sample the patient to find out which support point he best corresponds to?
  - Classifying patients is fundamentally different from trying to estimate patient's parameters
- Treating MM experiment design in the context of classification theory leads to the mathematical problem of <u>minimizing Bayes risk</u> (Duda et. al. [21])

Multiple Model Optimal Design (MMOpt)

• Bayes Rule

 $p(H_i|y, u) = \frac{p(y|H_i, u)p(H_i)}{p(y|u)}, \quad i = 1, ..., m$ H<sub>i</sub> - Hypothesis that model *i* corresponds to true subject *u* - Experiment design variable (to be optimized over)

• Design Rule for MM Classifier

If  $p(H_j|y, u) = \max_i \{ p(H_i|y, u) \}$ , then

1.  $H_j$  is classified as TRUE

(i.e., j'th model is classified as true subject)

2.  $H_i$  for  $i \neq j$  is classified as FALSE

#### • Design Regions

MM classifier breaks y into m regions  $R_i$ , i = 1, ..., msuch that  $H_j$  is classified as TRUE when  $y \in R_j$ . Multiple Model Optimal Design (Cont'd)

- Bayes Risk (i.e., Probability of MM Classifier Being Wrong)
   P(error) = ∑<sub>i</sub><sup>m</sup> ∑<sub>j≠i</sub><sup>m</sup> P(y ∈ R<sub>j</sub>, H<sub>i</sub>|u) (Sum of probabilities over all possible ways of making a mistake)
- Bayes Risk represents a cost function to be minimized
  - Consistent with a Bayesian experiment design philosophy
- Result: (Blackmore et. al. 2008)

The Bayes Risk is upper bounded as follows:

$$P(error) \leq \sum_{i=1}^{m} \sum_{j>i=1}^{m} P(H_i)^{\frac{1}{2}} P(H_j)^{\frac{1}{2}} e^{-k(i,j)}$$

where,

$$k(i,j) = \frac{1}{4}(\mu(j) - \mu(i))^T \left(\Sigma(i) + \Sigma(j)\right)^{-1} (\mu(j) - \mu(i)) + \frac{1}{2} \ln \frac{|\frac{1}{2}(\Sigma(i) + \Sigma(j))|}{\sqrt{|\Sigma(i)||\Sigma(j)|}}$$

• MMOpt minimizes upper bound (1) on the probability that the true subject will be incorrectly classified

(1)

## Model Response Separation r(t)

 Model Response Separation r(t) is the separation between two model responses at a given time t

$$r(t) = |\eta(t, a_1) - \eta(t, a_2)|$$

•Defines natural statistic for discriminating between two models







• Models are best discriminated by sampling at a time t that maximizes r(t)

## MMOpt Example: 4-Models (1/2)

- Two-Parameters a, b  $y_i = \eta(t_i, a, b) + \sigma n_i$   $\eta(t, a, b) = be^{-at}$   $n_i \sim N(0, \sigma^2)$  $\sigma = 0.1$
- Prior:  $p_i = .25, i = 1, ..., 4$

| <b>Model Parameters</b> |     |       |  |  |  |  |
|-------------------------|-----|-------|--|--|--|--|
| #                       | a b |       |  |  |  |  |
| 1                       | 2   | 2.625 |  |  |  |  |
| 2                       | 1   | 0.6   |  |  |  |  |
| 3                       | 0.7 | 0.6   |  |  |  |  |
| 4                       | 0.5 | 0.6   |  |  |  |  |



## MMOpt Example: 4-Models (2/2)

| Design Metric | 2-Sample Times |      | Bayes Risk | Bayes Risk  |
|---------------|----------------|------|------------|-------------|
|               |                |      |            | 99%Conf *   |
| MMOpt         | 0.45           | 1.4  | 0.32839    | +/- 0.00070 |
| ED            | 0              | 0.8  | 0.37028    | +/- 0.00070 |
| EID           | 0              | 1    | 0.36044    | +/- 0.00072 |
| API           | 0              | 0.95 | 0.36234    | +/- 0.00072 |

| Design Metric | 3-Sample Times |      |       | Bayes Risk | Bayes Risk  |
|---------------|----------------|------|-------|------------|-------------|
|               |                |      |       | 99% Conf * |             |
| MMOpt         | 0.45           | 1.4  | 1.4   | 0.28065    | +/- 0.00067 |
| ED            | 0              | 0.7  | 0.9   | 0.32048    | +/- 0.00067 |
| EID           | 0              | 0    | 1     | 0.36034    | +/- 0.00072 |
| API           | 0              | 0.85 | 0.105 | 0.3099     | +/- 0.00069 |

• MMOpt has smallest Bayes Risk of all designs studied

\* evaluated based on Monte Carlo analysis using 1,400,000 runs per estimate

## **Comparison Table**

|                                                              | ED  | EID | API | MMOpt |
|--------------------------------------------------------------|-----|-----|-----|-------|
| Invariant under regular <u>linear</u><br>reparametrization*  | Yes | Yes | Yes | Yes   |
| Invariant under regular <u>nonlinear</u> reparametrization*  | No  | Νο  | Yes | Yes   |
| Allows taking fewer than p samples, p= # of parameters       | No  | No  | No  | Yes   |
| Can handle heterogeneous model structures                    | No  | No  | No  | Yes   |
| Gives known optimal solution to 2-model example <sup>*</sup> | No  | Νο  | No  | Yes   |
| Captures main elements of<br>minimizing Bayes risk           | No  | No  | No  | Yes   |

\*Proved in Bayard et. al., PODE 2013 [23]

## Weighted MMOpt

- Introduce weights  $\{c_{ij}\}$  to specify a cost for each type of classification error
- Assign  $c_{ij}$  as the cost of mistaking truth subject *i* for subject *j*  $(j \neq i)$
- Choice of weights tailors experiment design to desired applications of interest



## Weighted MMOpt

### • Weighted Bayes Risk (i.e., Expected Cost of MM Classifier Being Wrong)

 $C(error) = \sum_{i=1}^{m} \sum_{j \neq i=1}^{m} c_{ij} P(y \in R_j, H_i | u)$ 

(Sum of costs over all possible ways of making a mistake)

Here,  $c_{ij}$  is the cost of mistaking subject *i* for subject *j*  $(j \neq i)$ 

#### • Useful Result (new)

The Weighted Bayes Risk is upper bounded as follows:

$$C(error) \leq \sum_{i}^{m} \sum_{j \neq i}^{m} \overline{c}_{ij} P(H_i)^{\frac{1}{2}} P(H_j)^{\frac{1}{2}} e^{-k(i,j)}$$

where,

$$k(i,j) = \frac{1}{4}(\mu(j) - \mu(i))^T \left(\Sigma(i) + \Sigma(j)\right)^{-1} (\mu(j) - \mu(i)) + \frac{1}{2} \ln \frac{|\frac{1}{2}(\Sigma(i) + \Sigma(j))|}{\sqrt{|\Sigma(i)||\Sigma(j)|}}$$

 $\overline{c}_{ij} = \max\left(c_{ij}, c_{ji}\right)$ 

- Result allows weighted bound-optimal designs to be systematically calculated as in the unweighted MMopt case
- Weighted MMOpt minimizes upper bound (2) on the expected cost associated with the true subject being incorrectly classified

(2)

# **Applications of MMOpt**

### Three Numerical Examples

- PK Estimation (unweighted MMOpt)
- AUC Estimation (weighted MMOpt)
- AUC Control (weighted MMOpt)
- Results will be compared to ED optimal design EDopt
  - Also compared to Bayes optimal design Bopt when computationally feasible to do so

#### PK Population Model with 10 Multiple Model Points - First-Order PK Model



### **Unweighted MMOpt for PK Estimation**

• Summary of optimal 1,2 and 3 sample designs applied to PK Estimation

| Design Metric | Samples         |     |        | Bayes Risk   | 99% conf     |
|---------------|-----------------|-----|--------|--------------|--------------|
|               | (hr)            |     |        | (prob)       | (prob)       |
|               | 1-Sample Design |     |        |              |              |
| Bopt          | 4.25            |     |        | 0.5474       | $\pm 0.0015$ |
| MMopt         | 4.25            |     |        | 0.5474       | $\pm 0.0015$ |
|               | 2-Sample Design |     |        |              |              |
| MMopt         | 1               | 9.5 |        | 0.2947       | $\pm 0.0014$ |
| EDopt         | 1               | 24  |        | 0.3272       | $\pm 0.0014$ |
|               | 3-Sample Design |     |        |              |              |
| MMopt         | 1 1 10.5        |     | 0.2325 | $\pm 0.0013$ |              |
| EDopt         | 1               | 1   | 24     | 0.2617       | $\pm 0.0013$ |

- <u>1 Sample Design</u>: MMOpt performance equals Bayesian optimal design (both have Bayes Risk of 0.5474).
- MMOpt performance improves on EDopt design for 2 and 3 sample designs
  - <u>2 Sample Design</u>: Bayes Risk of 0.29 versus 0.33
  - <u>3 Sample Design</u>: Bayes Risk of 0.23 versus 0.26
- All results are statistically significant to p<0.0001</li>

### Weighted MMOpt for AUC Estimation

- OBJECTIVE: Design an experiment which is most informative about estimating patient's AUC
  - In this case MMopt weights are chosen as

$$c_{ij} = \left(\frac{D}{V_i K_i} - \frac{D}{V_j K_j}\right)^2$$

= Squared AUC error incurred if j'th subject's

AUC is used to estimate i'th subject's AUC



Dose input D = 300 (300 units of drug infused over 1 hour)

| #    | AUC Responses |
|------|---------------|
| 1    | 29.2767       |
| 2    | 28.7684       |
| 3    | 50.2902       |
| 4    | 30.9562       |
| 5    | 25.9683       |
| 6    | 93.5811       |
| 7    | 27.0741       |
| 8    | 115.8003      |
| 9    | 31.7176       |
| 10   | 31.1448       |
| Mean | 46.4578       |
| STD  | 30.2314       |

AUC responses to dose  $D_{18}$ 

### Weighted MMOpt for AUC Estimation (Cont'd)

• Summary of optimal 1,2 and 3 sample designs applied to AUC estimation

| Design Metric | Samples         |         |       | <b>RMS Error</b> | $99\%  \mathrm{conf}$ |
|---------------|-----------------|---------|-------|------------------|-----------------------|
|               | (hr)            |         |       | (AUC units)      | (AUC units)           |
|               | 1-Se            | ample D | esign |                  |                       |
| $Bopt_C_2$    | 24              |         |       | 5.9059           | $\pm 0.0270$          |
| $MMopt_C_2$   | 14              |         |       | 6.9789           | $\pm 0.0265$          |
| MMopt         | 4.25            |         |       | 21.6806          | $\pm 0.0919$          |
|               | 2-Sample Design |         |       |                  |                       |
| $MMopt_C_2$   | 1               | 13      |       | 1.8386           | $\pm 0.0231$          |
| MMopt         | 1               | 9.5     |       | 2.2346           | $\pm 0.0483$          |
| EDopt         | 1               | 24      |       | 2.2079           | $\pm 0.0211$          |
|               | 3-Sample Design |         |       |                  |                       |
| $MMopt_C_2$   | 1               | 10.25   | 10.25 | 1.4042           | $\pm 0.0175$          |
| MMopt         | 1               | 1       | 10.5  | 1.7025           | $\pm 0.0382$          |
| EDopt         | 1               | 1       | 24    | 1.8949           | $\pm 0.0188$          |

- <u>1 Sample Design</u>: Weighted MMOpt performance approximates that of the Weighted Bayesian optimal design (RMS error of 6.98 versus 5.9 AUC units)
- MMOpt performance improves on EDopt design
  - <u>2 Sample Design</u>: RMS error of 1.84 versus 2.21 (units of AUC)
  - <u>3 Sample Design</u>: RMS error of 1.40 versus 1.89 (units of AUC)
- All results are statistically significant to p<0.0001

### Weighted MMOpt for AUC Control

- OBJECTIVE: Design an experiment most informative about next dose needed for patient to achieve a specified AUC of  $\alpha_{des} = 40$ 
  - In this case MMopt weights are chosen as

| #    | Ideal Dose |
|------|------------|
| 1    | 409.8827   |
| 2    | 417.1242   |
| 3    | 238.6149   |
| 4    | 387.6442   |
| 5    | 462.1011   |
| 6    | 128.2311   |
| 7    | 443.2281   |
| 8    | 103.6267   |
| 9    | 378.3394   |
| 10   | 385.2965   |
| Mean | 335.4089   |
| STD  | 35.8470    |

$$c_{ij} = (\frac{D_j}{V_i K_i} - \alpha_{des})^2$$

= Squared AUC error incurred if j'th subject's ideal dose  $D_j$  is given to i'th subject

|        | j = 1 | j=2   | j = 3 | j = 4  | j = 5 | j = 6 | j = 7 | j = 8 | j = 9 | j = 10 |
|--------|-------|-------|-------|--------|-------|-------|-------|-------|-------|--------|
| i = 1  | 0     | 0.499 | 279   | 4.70   | 25.9  | 755   | 10.5  | 893   | 9.47  | 5.75   |
| i = 2  | 0.482 | 0     | 293   | 7.99   | 18.6  | 767   | 6.26  | 903   | 13.8  | 9.31   |
| i = 3  | 824   | 895   | 0     | 624    | 1403  | 342   | 1176  | 512   | 548   | 604    |
| i = 4  | 5.26  | 9.25  | 236   | 0      | 59.0  | 716   | 32.8  | 858   | 0.921 | 0.0586 |
| i = 5  | 20.4  | 15.1  | 374   | 41.5   | 0     | 835   | 2.66  | 962   | 52.5  | 44.2   |
| i = 6  | 771   | 8121  | 1185  | 6548   | 10846 | 0     | 9654  | 58.9  | 6086  | 6430   |
| i = 7  | 9.05  | 5.54  | 340   | 25.1   | 2.90  | 808   | 0     | 939   | 34.2  | 27.3   |
| i = 8  | 13975 | 14643 | 2715  | 12019  | 19147 | 90.1  | 17184 | 0     | 11244 | 11821  |
| i = 9  | 11.1  | 16.8  | 218   | 0.967  | 78.4  | 699   | 47.0  | 843   | 0     | 0.541  |
| i = 10 | 6.51  | 10.9  | 231   | 0.0594 | 63.5  | 712   | 36.1  | 855   | 0.521 | 0      |

Ideal Doses  $\{D_j\}$  to achieve desired AUC of  $\alpha_{des} = 40$ 

Matrix of Weights  $\{c_{ij}\}$ 

### Weighted MMOpt for AUC Control (Cont'd)

• Summary of optimal 1,2 and 3 sample designs applied to AUC control

| Design Metric | Samples         |       |       | <b>RMS Error</b> | 99% conf     |
|---------------|-----------------|-------|-------|------------------|--------------|
|               | (hr)            |       |       | (AUC units)      | (AUC units)  |
|               | 1-Sample Design |       |       |                  |              |
| $Bopt_C_1$    | 12.5            |       |       | 3.6194           | $\pm 0.0273$ |
| $MMopt_C_1$   | 14              |       |       | 3.7729           | $\pm 0.0166$ |
| MMopt         | 4.25            |       |       | 16.7924          | $\pm 0.1145$ |
|               | 2-Sample Design |       |       |                  |              |
| $MMopt_C_1$   | 1               | 13    |       | 2.1102           | $\pm 0.0125$ |
| MMopt         | 1               | 9.5   |       | 2.2575           | $\pm 0.0232$ |
| EDopt         | 1               | 24    |       | 2.6159           | $\pm 0.0174$ |
|               | 3-Sample Design |       |       |                  |              |
| $MMopt_C_1$   | 1               | 10.25 | 10.25 | 1.6967           | $\pm 0.0078$ |
| MMopt         | 1               | 1     | 10.5  | 1.9991           | $\pm 0.0192$ |
| EDopt         | 1               | 1     | 24    | 2.4194           | $\pm 0.0174$ |

- <u>1 Sample Design</u>: weighted MMOpt performance approximates that of the weighted Bayesian optimal design (RMS error of 3.62 versus 3.77 AUC units)
- MMOpt performance improves on EDopt design for 2 and 3 sample designs
  - <u>2 Sample Design</u>: RMS error of 2.11 versus 2.62 (units of AUC)
  - <u>3 Sample Design</u>: RMS error of 1.70 versus 2.42 (units of AUC)
- All results are statistically significant to p<0.0001

## Summary

- Multiple Model Optimal Design (MMOpt) provides an alternative approach to designing experiments
  - Particularly attractive for Nonparametric Models (MM discrete prior)
  - Based on true MM formulation of the problem (i.e., classification theory)
  - Has several advantages relative to ED, EID and API (last year's PODE [23])
  - Based on recent theoretical overbound on Bayes Risk (Blackmore et. al. 2008 [4])
- Introduced Weighted version of MMOpt which minimizes upper bound on the Weighted Bayes Risk
  - Allows specification of costs for each type of classification error
  - Preserves overbound property so that weighted MMOpt designs are as straightforward to compute as unweighted MMOpt designs
  - Examples show that weighted MMOpt performance improves on EDopt, and compares favorably to the theoretically best performance of the weighted Bayes optimal classifier
- MMOpt captures essential elements of Bayesian Experiment Design without the excessive computation
  - Bayesian formulation of design problem for multiple model problems
  - Allows approximate pre-posterior analysis "without tears"
  - To be included in a future release of the USC BestDose software [3]

## References (1/3)

- [1] Bayard D, Jelliffe R, Schumitzky A, Milman M, Van Guilder M. Precision drug dosage regimens using multiple model adaptive control: Theory and application to simulated Vancomycin therapy. In: Selected Topics in Mathematical Physics, Prof. R. Vasudevan Memorial Volume. Madras: World Scientific Publishing Co., 1995.
- [2] Schumitzky A. "Application of stochastic control theory to optimal design of dosage regimens," In: Advanced methods of pharmacokinetic and pharmacodynamic systems analysis. New York: Plenum Press; 1991:137-152

[3] USC BestDose, http://www.lapk.org

- [4] Blackmore L, Rajamanoharan S, and Williams BC, "Active Estimation for Jump Markov Linear Systems," IEEE Trans. Automatic Control., Vol. 53, No. 10., pp. 2223-2236, Nov. 2008.
- [5] Mallet A. "A maximum likelihood estimation method for random coefficient regression models," *Biometrika*. 1986;73:645-656.
- [6] B. Lindsay, "The Geometry of Mixture Likelihoods: a General Theory," Ann. Statist. 11: 86-94, 1983.
- [7] Schumitzky, "Nonparametric EM Algorithms for estimating prior distributions," Applied Mathematics and Computation, Vol. 45, Nol. 2, September 1991, Pages 143–157.

## References (2/3)

- [8] R. Leary, R. Jelliffe, A. Schumitzky, and M. Van Guilder. "An Adaptive Grid Non- Parametric Approach to Pharmacokinetic and Dynamic (PK/PD) Population Models." In Computer-Based Medical Systems, 2001. CBMS 2001. Proceedings. 14th IEEE Symposium on, pp. 389-394. IEEE, 2001.
- [9] Y. Baek, "An Interior Point Approach to Constrained Nonparametric Mixture Models," Ph.D. Thesis, University of Washington, 2006.
- [10] Jelliffe R, Schumitzky A, Bayard D, Van Guilder M, Leary RH. "The USC\*PACK Programs for Parametric and Nonparametric Population PK/PD Modeling," Population Analysis Group in Europe, Paris, France, June 2002.
- [11] D.Z. D'Argenio, A. Schumitzky, and X. Wang, <u>ADAPT 5 User's Guide</u>. Biomedical Simulation Resource, University of Southern California, 2009.
- [12] D'Argenio DZ, "Optimal Sampling Times for Pharmacokinetic Experiments," J. Pharmacokinetics and Biopharmaceutics, vol. 9, no. 6, 1981: 739-756
- [13] K. Chaloner and I. Verdinelli, "Bayesian experimental design: A review," Statistical Science, Vol. 10, No. 3, pp. 273-304, 1995.
- [14] L. Pronzato and E. Walter, "Robust experiment design via stochastic approximation," Mathematical Biosciences, Vol. 75, pp. 103-120, 1985

## References (3/3)

- [15] E. Walter and L. Pronzato, "Optimal experiment design for nonlinear models subject to large prior uncertainties," American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 253:R530-R534, 1987.
- [16] M. Tod and J-M Rocchisani, "Comparison of ED, EID, and API criteria for the robust optimization of sampling times in pharmacokinetics," J. Pharmacokinetics and Biopharmaceutics, Vol. 25, No. 4, 1997.
- [17] D.Z. D'Argenio, "Incorporating prior parameter uncertainty in the design of sampling schedules for pharmacokinetic parameter estimation experiments," Mathematical Biosciences, Vol. 99, pp. 105-118, 1990.
- [18] Y. Merle and F. Mentre, "Bayesian design critera: Computation, comparison, and application to a pharmacokinetic and a pharmacodynamic model," J. Pharmacokinetics and Biopharmaceutics, vol. 23, No. 1, 1995.
- [19] S.D. Silvey, *Optimal Design: An Introduction to the Theory for Parameter Estimation*. Chapman and Hall, London, 1980.
- [20] V.V. Fedorov, *Theory of Optimal Experiments*. Academic Press, New York, 1972.
- [21] R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification. John Wiley & Sons, New York, 2001.
- [22] L. Pronzato and A. Pazman, Design of Experiments in Nonlinear Models.

Lecture Notes in Statistics, Springer, New York, 2013.

[23] D.S. Bayard, R. Jelliffe and M. Neely, "Bayes Risk as an Alternative to Fisher Information in Determining Experiment Designs for Nonparametric Models," Population Optimum Design of Experiments (PODE): Workshop, Lilly UK, 15 June 2013.