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Outline

Bayesian design and approximations

Parameter singularities and non-integrability

Suggestions for addressing non-integrability

Illustration: how badly things can go wrong
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Motivation

In recent years, there have been many developments in optimal experimental
designs for more sophisticated models

generalized linear mixed models

nonlinear mixed effects models

For these models, D-optimal designs etc. depend on the values of the parameters

Approaches

locally optimal ‘best guess’

Bayesian design

maximin designs

response-adaptive/sequential design
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Bayesian design

(Chaloner & Verdinelli, 1995)

Notation

y ∈ Y responses

θ ∈ Θ parameter vector

prior knowledge summarized by f (θ)

ξ finitely-supported approximate design

Idea: choose ξ to maximize the expected ‘distance’ / information gain

f (θ) prior → f (θ|ξ, y) posterior

‘Distance’ measured via Kullback-Leibler divergence / Shannon information gain

ψKL(ξ) =

∫
Y

∫
Θ

log
f (θ|ξ, y)

f (θ)
f (y,θ|ξ)dθdy
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In practice, optimization of expected information gain is usually too hard

Instead we typically optimize a surrogate objective function

φ(ξ) = Eθ log |nM(ξ,θ)| (1)

φ2(ξ) = Eθ log |nM(ξ,θ) + R| (2)

M(ξ,θ) is the Fisher information matrix, Ey

[
−∂

2 log f (y|ξ,θ)
∂θ∂θ>

]
R = ∂2 log f (θ)

∂θ∂θ> , or R = var(θ)−1

Objective function (1) is the most common

Also sometimes used when a Bayesian analysis will not be conducted
(pseudo-Bayesian design)

Focus of the talk - sometimes the approximation φ can fail badly
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Singularities

Intuitive definition
A parameter singularity is a combination of parameter values where all designs are
’uninformative’

Formal definition
θ0 is a parameter singularity if, for any ξ, |M(ξ,θ0)| = 0

Example
Exponential regression model

yi ∼ N[η(xi ), σ
2]

η(x) = e−x/θ

parameterized by lifetime θ > 0

Parameter singularities {0,∞}

Tim Waite (U. Southampton) Integrability and Bayesian D-optimality 15 Jun 2013 6 / 27



Singularities

Intuitive definition
A parameter singularity is a combination of parameter values where all designs are
’uninformative’

Formal definition
θ0 is a parameter singularity if, for any fixed ξ, |M(ξ,θ)| → 0 as θ → θ0

Example
Exponential regression model

yi ∼ N[η(xi ), σ
2]

η(x) = e−x/θ

parameterized by lifetime θ > 0

Parameter singularities {0,∞}
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Why are there parameter singularities at 0 and ∞?

x
0 5

1

η

θ = 1000

θ = 0.05
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Example II

Logistic regression

Binary response (0/1) - event occurs or does not occur. Controllable variable, x ,
is usually a (log)-dose

yi ∼ Bernoulli(pi )

pi =
1

1 + exp{−β(xi − µ)}

µ is the dose at which there is a 50% chance of the event occuring

Chaloner & Larntz (1989) studied Bayesian design for this model

Parameter singularities at β = 0, β =∞

Why? When β = 0, µ is not identifiable
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Parameter singularity at β =∞

x0

1p(x)

β = 6

β = 1
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The punchline

Reconsider

φ(ξ) =

∫
Θ

log |M(ξ,θ)|f (θ)dθ

- near parameter singularities, |M(ξ,θ)| → 0

- the integrand above → −∞ in parts of the domain of integration

So the integral

may not exist (Riemann)

may equal −∞ (Lebesgue)

(in the same sense that
∫

[0,1]
−1
x2 dx either doesn’t exist or is −∞)
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Chaloner & Verdinelli (1995) discussed integrability, but only highlighted the issue
where the prior has unbounded support

Tsutakawa (1972) gave a problem where the integral is −∞

The issue is not restricted to unbounded supports

Tim Waite (U. Southampton) Integrability and Bayesian D-optimality 15 Jun 2013 11 / 27



What can be done?

1. Use a different approximation

- not φ, instead e.g. φ2, or a more sophisticated computational approximation

2. Use a different design selection criterion

- if Bayesian analysis will not be used, the principled justification of Shannon
information gain breaks down

3. Use a different prior

4. Density designs?
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Alternative criteria

Efficiency distribution

Consider the D-efficiency function

eff(ξ|θ) =

{
|M(ξ,θ)|

supξ′ |M(ξ′,θ)|

}1/p

prior on θ induces a distribution on eff(ξ|θ)

Woods et al. (2006) used efficiency function & distribution to assess designs

From pseudo-Bayesian viewpoint, optimization of e.g. φ is a device to obtain
satisfactory efficiency distribution
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If analysis non-Bayesian, and φ is degenerate, makes sense to use a criterion which
is well-behaved

Mean local efficiency
One approach is to maximize

Ψ(ξ) = Eθ eff(ξ|θ)

has an interpretation as minimizing an expected cost regret

(amount of overspend due to inefficiency, when compared with other equally
informative designs)
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Density designs

One suggestion is, instead of finitely-supported designs,{
x1 . . . xk
w1 . . . wk

}
define a design using a probability density function, g(x), on X

In some sense such designs ‘get everywhere’ in X , and are infinitely-supported

Have been considered, e.g. by Wiens (1992) in context of model robustness

Information matrix formed as

M(ξ,θ) =

∫
X
M(x ,θ)g(x)dx
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Detailed example

Exponential regression

yi ∼ N[η(xi ), σ
2]

η(x) = e−x/θ

Assume a priori that
θ ∼ U(0, a)

Parameter singularities {0,∞}, but for θ > 0 only singular design is x = 0

for fixed θ > 0, |M(ξ, θ)| = 0 only when ξ puts unit mass on x = 0

Lemma all single-point designs have φ(ξ) = −∞

Theorem all finitely-supported designs have φ(ξ) = −∞
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Conclusion: here φ is useless in helping us make a choice between designs

despite the fact the prior support is bounded

numerical methods - spurious comparisons
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To prove the Lemma, consider

log |M(x , θ)| = −2x

θ
− 4 log θ + 2 log x

To prove the Theorem, make use of the following inequality. For x > 0, y ≥ 0

log(x + y) ≤ log(x) + y/x

Can be used to show that

log |M(ξ, θ)| ≤ logw1 + logM(x1, θ) + T (θ)

WLOG x1 ≤ x2 ≤ . . . xn, in which case it is true that 0 ≤ T (θ) ≤ 1

E log |M(ξ, θ)| ≤ logw1 + E logM(x1, θ) + ET (θ) = −∞
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Locally optimal and maximum mean efficiency designs can be computed
analytically

Proposition the locally D-optimal design at θ is the single-point design x = θ

Proposition the design which maximizes the mean local efficiency under
θ ∼ U(0, a) is the single-point design x = a/2

- the mean local efficiency of this design is 67%, regardless of a
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Properties of the Ψ-optimal design
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Density designs

Consider the design ξU defined by a uniform probability density on (0, a)

g(x) = a−11(0 < x < a)

Recall that the information matrix is

M(ξU , θ) =
1

a

∫ a

0

M(x , θ) dx

It can be shown that

φ(ξU) = E log |M(ξU , θ)| > −∞

so the uniform design is not degenerate with respect to φ

Can also compute the D-efficiency

eff(ξU |θ) =

{
|M(ξU , θ)|

supξ′ |M(ξ′, θ)|

}1/p

and the efficiency distribution
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Properties of the uniform density design
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Interpretation of density designs

Density designs cannot be used directly in practice.
How about finite (random) samples from the distribution?

Let Xn = (x1, . . . , xn) be such a sample.

Proposition

As n→∞,
eff(Xn|θ)→ eff(ξU |θ) almost surely

Moreover we can produce ‘95% performance limits’
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Sampling properties of uniform design, n = 100
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For any θ, we have a positive probability of obtaining a reasonably efficient design

This must be traded off with the probability of obtaining a design which is
inefficient for most values of θ

Moreover, the sampled design will have φ(Xn) = −∞
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Conclusions

when producing Bayesian designs, be cautious about integrability

if parameter singularities can’t be avoided, consider alternative
approximations/criteria

Future work

development of further explicitly pseudo-Bayesian criteria

other situations where random designs may be helpful
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