Integrability and Bayesian D-optimality J

Tim Waite

t.w.waite@southampton.ac.uk

Statistical Sciences Research Institute
University of Southampton

Supported by the UK Engineering and Physical Sciences Research Council

PODE2013 - 15 June 2013
Lilly UK, Surrey

Tim Waite (U. Southampton) Integrability and Bayesian D-optimality 15 Jun 2013 1 /27



Outline

Bayesian design and approximations

o Parameter singularities and non-integrability

Suggestions for addressing non-integrability

Illustration: how badly things can go wrong
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Motivation

In recent years, there have been many developments in optimal experimental

designs for more sophisticated models
@ generalized linear mixed models

@ nonlinear mixed effects models

For these models, D-optimal designs etc. depend on the values of the parameters

Approaches
@ locally optimal ‘best guess’
@ Bayesian design
@ maximin designs

@ response-adaptive/sequential design
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Bayesian design

(Chaloner & Verdinelli, 1995)

Notation
@ y € Y responses
@ 0 € O parameter vector
@ prior knowledge summarized by f(0)

o ¢ finitely-supported approximate design

Idea: choose & to maximize the expected ‘distance’ / information gain

f(0) prior — f(6|¢,y) posterior

‘Distance’ measured via Kullback-Leibler divergence / Shannon information gain

onal6) = [ [ 108 “GE 11y, 010)doy
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In practice, optimization of expected information gain is usually too hard
Instead we typically optimize a surrogate objective function

¢(§) = Eglog [nM(¢, 0))| (1)
$2(€) = Eglog [nM(¢, 0) + R| )

o M(&,6) is the Fisher information matrix, Ey |~ 1%874150)|

o R= %, or R =var(8)!
Objective function (1) is the most common

Also sometimes used when a Bayesian analysis will not be conducted
(pseudo-Bayesian design)

Focus of the talk - sometimes the approximation ¢ can fail badly
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Singularities

Intuitive definition

A parameter singularity is a combination of parameter values where all designs are

"uninformative’

Formal definition
0o is a parameter singularity if, for any &, [M(§,60)| =0

Example
Exponential regression model

yi ~ Nln(x), 0’|

_ . —x/0
n(x)=e
parameterized by lifetime 6 > 0
Parameter singularities {0, 0o}
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Singularities

Intuitive definition
A parameter singularity is a combination of parameter values where all designs are
'uninformative’

Formal definition
0o is a parameter singularity if, for any fixed &, |[M(&,0)] — 0 as 8 — 6,

Example
Exponential regression model

yi ~ N[i(x;), %]
n(x) = e /?

parameterized by lifetime 6 > 0

Parameter singularities {0, 0o}

Tim Waite (U. Southampton) Integrability and Bayesian D-optimality 15 Jun 2013 6/ 27



Why are there parameter singularities at 0 and co?

6 = 1000

Ui 0 =0.05
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Example Il

Logistic regression

Binary response (0/1) - event occurs or does not occur. Controllable variable, x,

is usually a (log)-dose

yi ~ Bernoulli(p;)
1

T 1+ exp{-—B(x —n)}

Pi

@ 1 is the dose at which there is a 50% chance of the event occuring
@ Chaloner & Larntz (1989) studied Bayesian design for this model

Parameter singularities at 5 =0, = o0

Why? When 8 =0, u is not identifiable

Tim Waite (U. Southampton) Integrability and Bayesian D-optimality 15 Jun 2013

8 /27



Parameter singularity at 8 = oo

p(x) 1

™ @
[l
= o
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The punchline

Reconsider

6(6) = /@ log | M(¢, 0)|7(8)d6

- near parameter singularities, |[M(&,0)| — 0

- the integrand above — —o0 in parts of the domain of integration

So the integral
@ may not exist (Riemann)

e may equal —oo (Lebesgue)

(in the same sense that f[o 1 ;—}dx either doesn't exist or is —00)
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Chaloner & Verdinelli (1995) discussed integrability, but only highlighted the issue

where the prior has unbounded support
Tsutakawa (1972) gave a problem where the integral is —co

The issue is not restricted to unbounded supports
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What can be done?

1. Use a different approximation

- not ¢, instead e.g. ¢,, or a more sophisticated computational approximation

2. Use a different design selection criterion

- if Bayesian analysis will not be used, the principled justification of Shannon
information gain breaks down

3. Use a different prior

4. Density designs?
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Alternative criteria

Efficiency distribution
Consider the D-efficiency function

- M(E.0) \'*
eff(¢10) = {sup£|l\/l(§0)}

@ prior on O induces a distribution on eff(£|0)

@ Woods et al. (2006) used efficiency function & distribution to assess designs

From pseudo-Bayesian viewpoint, optimization of e.g. ¢ is a device to obtain
satisfactory efficiency distribution
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If analysis non-Bayesian, and ¢ is degenerate, makes sense to use a criterion which
is well-behaved

Mean local efficiency
One approach is to maximize

V(£) = Eg eff(]6)

@ has an interpretation as minimizing an expected cost regret

@ (amount of overspend due to inefficiency, when compared with other equally
informative designs)
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Density designs

One suggestion is, instead of finitely-supported designs,
X1 e Xg
wp ... Wy
define a design using a probability density function, g(x), on X

In some sense such designs ‘get everywhere' in X, and are infinitely-supported
Have been considered, e.g. by Wiens (1992) in context of model robustness

Information matrix formed as

M(E.0) = /X M(x. 8)g(x)dx
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Detailed example

Exponential regression

yi ~ Nn(x;), 0°]
n(x) = e x/?

Assume a priori that
6 ~ U(0,a)

Parameter singularities {0, 0o}, but for # > 0 only singular design is x = 0

o for fixed 6 > 0, |[M(&,0)| = 0 only when £ puts unit mass on x =0

Lemma all single-point designs have ¢(§) = —oo

Theorem all finitely-supported designs have ¢(§) = —co
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Conclusion: here ¢ is useless in helping us make a choice between designs

@ despite the fact the prior support is bounded

@ numerical methods - spurious comparisons
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To prove the Lemma, consider
log |M(x,0)| = —%( —4log 0 + 2log x
To prove the Theorem, make use of the following inequality. For x >0, y > 0
log(x +y) < log(x) +y/x
Can be used to show that
log |M(&,0)| < log wy + log M(x1,6) + T(6)
WLOG x; < xp < ...Xp, in which case it is true that 0 < T(9) <1

Elog |M(&,60)| < logw; + Elog M(x1,0) + E T(0) = —o0
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Locally optimal and maximum mean efficiency designs can be computed
analytically

Proposition the locally D-optimal design at 6 is the single-point design x = 6

Proposition the design which maximizes the mean local efficiency under
6 ~ U(0, a) is the single-point design x = a/2

- the mean local efficiency of this design is 67%, regardless of a
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Properties of the W-optimal design
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Density designs
Consider the design £y defined by a uniform probability density on (0, a)

g(x)=a'1(0 < x < a)
Recall that the information matrix is
1 a
M(c.0) = - / M(x, 0) dx
0
It can be shown that
¢(§u) = Elog[M(&u,0)| > —o0

so the uniform design is not degenerate with respect to ¢

Can also compute the D-efficiency

IM(¢u.0)] \**
)|}

ew(6l0) = { o e

and the efficiency distribution
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Properties of the uniform density design
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Interpretation of density designs

Density designs cannot be used directly in practice.
How about finite (random) samples from the distribution?

Let X, = (x1,...,X,) be such a sample.
Proposition

As n — oo,
eff(X,]0) — eff(€y|@)  almost surely

Moreover we can produce ‘95% performance limits'
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Sampling properties of uniform design, n = 100

eff(X,, 0)
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For any 6, we have a positive probability of obtaining a reasonably efficient design

This must be traded off with the probability of obtaining a design which is
inefficient for most values of 6

Moreover, the sampled design will have ¢(X,) = —oc0
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Conclusions

@ when producing Bayesian designs, be cautious about integrability

o if parameter singularities can't be avoided, consider alternative
approximations/criteria

Future work
o development of further explicitly pseudo-Bayesian criteria

@ other situations where random designs may be helpful
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