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Methods of Optimal Design  
• D-optimality (traditional) maximizes the determinant of the Fisher 

Information Matrix (Fedorov 1972 [20], Silvey 1980 [19] ) 

– Intended for parameter estimation problems [11][12] 

– Modifications for robustness: ED, EID, API, etc. 

 

• Multiple Model Optimal (MMOpt) Design (new) minimizes an 
overbound on the Bayes risk 

– Can be evaluated without numerical integration or Monte Carlo 
simulation/stochastic analysis 

– Intended for multiple model (MM) parametrizations which form 
the  basis of the USC BestDose software 

• The multiple model representation corresponds to the 
support points in the nonparametric population model  

– Based on recent theoretical overbound on Bayes Risk 
(Blackmore et. al. 2008 [4]) 
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D-Optimal Design for Nonlinear Problems 

• D-Optimal design tells you where to place samples so that they are most 

sensitive to small changes in model parameter values 

– max |M|, where M is Fisher Information Matrix, and |(.)| is determinant 

– Useful tool has become standard in design of clinical experiments 

• Problem with D-optimal design - Circular reasoning (Silvey 1980): 

– You need to know the true patient’s parameters before D-optimal design can be 

used to compute the best experiment to find these same parameters 

 

• To robustify D-optimal design, an expectation is taken with respect to prior 

information (c.f., Chaloner [13]), Pronzato [14][15], Tod [16], D’Argenio [17]), 

ED:     max E{ |M| } 

EID:    min  E{ 1/|M| } 

ELD (or API):  max E{ log|M| } 

 

• MMopt comparison will be made here relative to ED, EID and API. Not 

exhaustive - other experiment design criteria are possible (cf., Chaloner 

[13], Merle and Mentre [18]) 
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Definition of ED, EID, API 

• All above design metrics require Fisher Matrix M to be 

nonsingular, and hence require at least p samples to be 

taken, where p=# parameters 
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Multiple Model Optimal Design 
• USC BestDose software [3] is based on a multiple model (MM) 

parametrization of the Bayesian prior (i.e., discrete support points in the 

nonparametric population model) 

• Experiment design for MM (i.e., discrete) models is a subject found in 

classification theory  

– How do we sample the patient to find out which support point he best 

corresponds to? 

– Classifying patients is fundamentally different from trying to estimate 

patient’s parameters 

 

• Treating MM experiment design in the context of classification theory leads 

to the mathematical problem of minimizing Bayes risk (Duda et. al. [21]) 
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– Nonparametric Maximum Likelihood (NPML) 

estimation of a population model has the form 

of a MM prior (Mallet [5], Lindsay [6]). 

– Software for population NPML modeling is 

available, e.g.,  NPEM (Schumitzky [7][11]), 

NPAG (Leary [8], Baek [9]), USC*PACK (Jelliffe 

[10]). 
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Simple 2-Model Example 
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• Model Response Separation r(t) is the 

separation between two model responses at a 

given time t 

 

 

•Defines natural statistic for discriminating 

between two models 

 

• Bayes Risk is shown in gray area 
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Bayes Optimal Design 
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Design Metric Sample Time Bayes Risk 

Bayes Optimal 1.188 0.1393 

MMOpt 1.188 0.1393 

ED 4.000 0.2701  

EID 0.5600  0.1827  

API 0.8890 0.1462 

2-Model Results 



15 

2-Models with Close Parameters 
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• MMopt agrees exactly with Bayes optimal design for this problem  

• Designs (ED, EID, API, D-Optimal) are close to Bayes Optimal design 

• Not coincidence: for two model responses close enough to differ by a first-

order approximation in a Taylor expansion: 

– Maximizing Model response separation is similar to maximizing Fisher information 

– Goals of classification and parameter estimation are very similar 

Design Metric Sample Time Bayes Risk 

Bayes Optimal 0.9530 0.4767  

MMOpt 0.9530 0.4767  

ED 0.9570    0.4767  

EID 0.9480   0.4767  

API 0.9520 0.4767  

D-Optimal 0.9524 0.4767  

Results for 2-Models with Close Parameters 
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4-Model Example 
• Example where Bayes Optimal Design is too difficult to compute 

• Demonstrates usefulness of MMopt design 
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• Grid points t=0.05 apart 

• Designs optimized over time grid 
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Design Metric 2-Sample Times Bayes Risk Bayes Risk 

99%Conf * 

MMOpt 0.45 1.4 0.32839 +/- 0.00070 

ED 0 0.8 0.37028  +/- 0.00070 

EID 0 1 0.36044  +/- 0.00072 

API 0 0.95 0.36234  +/- 0.00072 

Design Metric 3-Sample Times Bayes Risk Bayes Risk 

99% Conf * 

MMOpt 0.45 1.4 1.4 0.28065 +/- 0.00067 

ED 0 0.7 0.9 0.32048 +/- 0.00067 

EID 0 0 1 0.36034 +/- 0.00072 

API 0 0.85 0.105 0.3099 +/- 0.00069 

4-Model Results 

• MMopt has smallest Bayes Risk of all designs studied 

• Bayes optimal design is too difficult to compute for this problem 

* evaluated based on Monte Carlo analysis using 1,400,000 runs per estimate 
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Experiment Design under Reparametrization 
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Model Parameters 

# K V 

1 0.090088 113.7451 

2 0.111611    93.4326 

3 0.066074    90.2832 

4 0.108604    89.2334 

5 0.103047   112.1093 

6 0.033965    94.3847 

7 0.100859   109.8633 

8 0.023174   111.7920 

9 0.087041   108.6670 

10 0.095996   100.3418 

PK Population Model with 10 Multiple Model 

Points - First-Order PK Model 
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ED EID API MMopt 
Invariant under regular linear 

reparametrization* 

Yes Yes 

 

Yes 

 

Yes 

 

Invariant under regular 

nonlinear reparametrization* 

No No 

 

Yes Yes 

 

Allows taking fewer than  p 

samples, p= # of parameters 

No 

 

No 

 

No 

 

Yes 

 

Can handle heterogeneous 

model structures 

No 

 

No 

 

No 

 

Yes 

 

Gives known optimal solution 

to 2-model example 

No 

 

No 

 

No 

 

Yes 

 

Captures main elements of 

minimizing Bayes risk 

No 

 

No 

 

No 

 

Yes 

 

Comparison Table 

*Proved in Appendix 
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Summary 
• Multiple Model Optimal Design (MMOpt) provides an alternative 

to Fisher-Information Matrix based design 
– Particularly attractive for Nonparametric Models (MM discrete prior) 

– Based on true MM formulation of the problem (i.e., classification theory) 

– Has many advantages relative to ED, EID and API (see Table summary) 

– Based on recent theoretical overbound on Bayes Risk (Blackmore et. al. 2008) 

 

• Advantages of MMopt shown using simple 2-Model example  
– Both Bayes Optimal design and MMopt maximize Model Response Separation 

– MMopt identical to Bayes Optimal Sample design for this problem 

– ED, EID and API did not perform well in terms of Bayes Risk unless a-priori 
parameter uncertainty is chosen small 

– Shown that goals of classification and parameter estimation become 
asymptotically similar as prior parameter uncertainty becomes vanishingly small 

 

• ED, EID and API designs do not explicitly consider model 
response separation 

– Blind to the underlying classification problem 

– Not as well-suited for nonparametric models 

 

• MMopt captures essential elements of Bayes Risk minimization 
without the excessive computation 

– Targeted to be included in a future release of the USC BestDose software 
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APPENDIX 
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Properties of ED-class Designs under Regular* Reparametrization (1/4) 
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Properties of Robust D-Optimal Designs under Regular Reparametrization (2/4) 

ED EID ELD 

Invariant under regular linear 

reparametrization 

Yes Yes 

 

Yes 

 

Invariant under regular 

nonlinear reparametrization 

No No 

 

Yes 

• Next slides will prove results in following table: 
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Properties of Robust D-Optimal Designs under Regular Reparametrization (3/4) 
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Properties of Robust D-Optimal Designs under Regular Reparametrization (4/4) 
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Relation Between MMopt and Fisher Matrix in  

2-Model Example with Close Parameters 


