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Methods of Optimal Design

D-optimality (traditional) maximizes the determinant of the Fisher
Information Matrix (Fedorov 1972 [20], Silvey 1980 [19] )

— Intended for parameter estimation problems [11][12]
— Modifications for robustness: ED, EID, API, etc.

Multiple Model Optimal (MMOpt) Design (new) minimizes an
overbound on the Bayes risk

— Can be evaluated without numerical integration or Monte Carlo
simulation/stochastic analysis

— Intended for multiple model (MM) parametrizations which form
the basis of the USC BestDose software

 The multiple model representation corresponds to the
support points in the nonparametric population model

— Based on recent theoretical overbound on Bayes Risk
(Blackmore et. al. 2008 [4])




¢ Dynamic Model and Measurements
t(t) = f(x(t),d(t),0) State x, Input d, Parameter 6 € RP
n; = h(z(t;),0), System output at time t;
y; = 1n; +o;n;, Noisy measurement at time ¢;
n; ~ N(0,1), Gaussian measurement noise

£ ={t1,...,tmn}, Experiment design (optimal sampling)

e D-Optimal Design
maxe ’M’

where the Fisher Information Matrix M is given by,

M0,€) = Sy [ % o]

6=06
e Herein, M (6,€) is assumed to be a function of 6

(i.e., nonlinear problems)



D-Optimal Design for Nonlinear Problems

D-Optimal design tells you where to place samples so that they are most
sensitive to small changes in model parameter values

— max |M|, where M is Fisher Information Matrix, and |(.)| is determinant
— Useful tool has become standard in design of clinical experiments
Problem with D-optimal design - Circular reasoning (Silvey 1980):

— You need to know the true patient’s parameters before D-optimal design can be
used to compute the best experiment to find these same parameters

To robustify D-optimal design, an expectation is taken with respect to prior
information (c.f., Chaloner [13]), Pronzato [14][15], Tod [16], D’Argenio [17]),

ED: max E{|M|}
EID: min E{ 1/|M|}
ELD (or API): max E{ log|M| }

MMopt comparison will be made here relative to ED, EID and API. Not
exhaustive - other experiment design criteria are possible (cf., Chaloner
[13], Merle and Mentre [18])



Definition of ED, EID, API

e Robust D-Optimal Designs
ED: arg maxg Eg( ‘M| )
EID: arg ming Eg(ﬁ)
API: argmax¢ Ly ( log‘M’ )
where,
6 € RP - Parameter Vector
n={t1,....,tm} - Experiment design

M - Fisher Information Matrix

* All above design metrics require Fisher Matrix M to be
nonsingular, and hence require at least p samples to be
taken, where p=# parameters




Multiple Model Optimal Design

USC BestDose software [3] is based on a multiple model (MM)
parametrization of the Bayesian prior (i.e., discrete support points in the
nonparametric population model)

MM Prior

0.015

— Nonparametric Maximum Likelihood (NPML)
estimation of a population model has the form 7
of a MM prior (Mallet [5], Lindsay [6]). B

— Software for population NPML modeling is Tt B
available, e.g., NPEM (Schumitzky [7][11]), 1 I — o
NPAG (Leary [8], Baek [9]), USC*PACK (Jelliffe Koy
[10]). T

Experiment design for MM (i.e., discrete) models is a subject found in

classification theory

8 o001
o

0.005

0

— How do we sample the patient to find out which support point he best
corresponds to?

— Classifying patients is fundamentally different from trying to estimate
patient’s parameters

Treating MM experiment design in the context of classification theory leads
to the mathematical problem of minimizing Bayes risk (Duda et. al. [21]) 5




Multiple Model Optimal Design (MMOpt)

e Bayes Rule

H;,u)p(H; .
p(H |y, u) = POl 5y

H, - Hypothesis that model ¢ corresponds to true subject

u - Experiment design variable (to be optimized over)

e Design Rule for MM Classifier

p(Hj|y,u) = max;{p(H;|y,u)} implies

1. H; is classified as TRUE
(i.e., j'th model is classified as true subject)

2. H,; for 1 # j is classified as FALSE

e Design Regions
MM classifier breaks y into N regions R;, : =1, ..., N
such that H; is classifed as TRUE when y € R;.




Multiple Model Experiment Design (MMED) (Cont’d)

e Bayes Risk (i.e., Probability of MM Classifier Being Wrong)
N <N
Plerror) =) > ;. P(y € Ry, H;|u)
N <N
=D Zj;&i P(y € R;|H;)p(H;)
N <N
=22 2t ij P(y € R;j|H;)p(H;)dy

e Result: (Blackmore et. al. 2008)

When performing hypothesis selection between an arbitrary number of hypotheses,
for Gaussian observation distributions such that p(Y|H;) = N(u(i), %(7)), i =1, ..., N,
the Bayes Risk is upper bounded as follows:

P(error) < Ziv Zj\;z P(Hi)%P(H.)%e—k(i,j)

where,

k(i) = 3(u(3) = n()" (2(@) + E(j))_ (u(5) — p(i)) + 1 1n '\;%)'I

e In short, the MMED experiment design maximizes the probability that the true subject

will be correctly identified (classified) among competing models




Simple 2-Model Example

e Simple 2-Model Example
yi = n(ti,a) +on;
n(t,a) =e "
a = a; = 2 (fast model)
a = as = 0.25 (slow model)
oc=20.3
Prior: py = .5, p2 = .5

e Fisher Information Matrix M

% = —te~ ¥
M(a) = 2 (te=)?

o2
|M(a)| — t26—2at/0.2
e Individual D-Optimal Designs
Fast Model: t =1/a; = .5
Slow Model: t =1/ay =4
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Model Response Separation r(t)
- Model Response Separation r(t) is the . Model Responses
separation between two model responses at a — Model 1 Reponse
given timet os \ Model 2 Response
r(t) = [n(t,a1) —n(t, az)| N
*Defines natural statistic for discriminating \ AN
between two models 04 r(t) = response separation
* Bayes Risk is shown in gray area 0.2 \\ \\
. \ \
r(t)=response separation ; N
A \ 0 2 4 _ 6 8 10
Two-Model Classification Problem Time
’ A - Bayes Risk (gray area)

decreases as response
separation r(t) increases

15

Pull Gaussians
‘ >apart to minimize
gray area

* Models are best
discriminated by sampling
at a time t that maximizes

r(t)

05

10




Bayes Optimal Design
e Bayes Optimal Design minimizes Bayes Risk
e Bayes Risk = Prob(Type I error)+ Prob(Type II error)
=p1 [ pylan)dy +p2 [0 plylaz)dy = 1~ [0/ N(0,0)dy

where (¢ ) = |n(t,a1) — n(t,as)| is response separation

e Bayes Risk decreases monotonically with increasing r(t)

e Minimized at time of maximal response separation r(t)

argmax; r(t) = |n(t,a1) —n(t,a1)| = 1.188

Bay_es Optimal | Model Responses
Design 1 ; ;

—— Model 1 Reponse
\ — Model 2 Response

0.8 \
| \ N
04 Maximal Response Separation

\ Att=1.188

0.2 \




MMopt for 2-Model Example

MMopt = arg min, plépg%e_k(l’z) —|—p2%p1% e k(2,1) — arg miny e—(n(t,a1)—n(t.a2))*/(807)
e Take negative-log since monotonic: MMopt = arg max; |n(t,a1) — n(t, asz)|

e MMopt directly maximizes r(t) = |n(t,a1) — n(t, a1)| response separation

e Hence, MMopt sample is at ¢ = 1.188 which is same as Bayes Optimal Design

Bayes Optimal design

1 r r r [
|
For 2-Model problem, MMopt ><v
gives identical solution as Bayes /% A
Optimal Design at t=1.188 & In(t.a,)m(ta)l
0.6 N Model 1: n(t,al)
. - . t._
Both de_3|gns maximize response Model 2: n(t,a.)
separation (green curve) 2
0.4 N — True Bayes Risk
\ | MMopt Cost
<+ Bayes Optimal Sample
0.27 // \\\
——
0 = : : : ;
0 2 4 6 8 10

t=1.188 Time 12



ED Design for 2-Model Example

e ED Optimal Design
ED information = E[|M|]
= .5|M(ay)| + .5|M (as)]

)+ .5(5 )

— _/
V

ED Criterion is blind
to model response

separation:
n(ta afl) - ”7(757 G’Q)
— e—alt _ e—azt

Note: model responses have been rescaled
to enable showing everything on one plot

N

5

10

ED design at t=4 sec is very different from
Bayes optimal design of t=1.188

/

ED|Design compared to Bayes Optimal

f f

—20™ (t’al)
— 20*n (t,a2)

IM(a,)|
ED Cost

ED Optimal
+ Bayes Optimal

o

\
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2-Model Results

Design Metric | Sample Time | Bayes Risk
Bayes Optimal | 1.188 0.1393
MMOpt 1.188 0.1393
ED 4.000 0.2701
EID 0.5600 0.1827
API 0.8890 0.1462

MMopt has smallest Bayes Risk of all designs studied

Observation: ED metric is blind to the underlying classification problem

e Misses importance of maximizing the response difference |n(t,a1) — n(t, az)|, which
requires analyzing model responses jointly.

Above observation applies to ED, EID, ELD, and any other information metric that
simply takes an expectation over individual model information.

As desired for classification, MMopt directly maximizes response difference

In(t,a1) — n(t,as)| and agrees exactly with Bayes optimal design for this problem

14



2-Models with Close Parameters

e 2-Model with Close Dynamics
yi = n(t;,a) + on;
n(t,a) = e
a = a; = 1.1 (fast model)
a = as =1 (slow model)
o=20.3
Prior: p;1 = .5, po = .5

e Individual D-Optimal Designs
Fast Model: t = 1/a; = 0.9091
Slow Model: t =1/as =1
A-prior Mean Model: t = 1/a = 0.9524
a=(a;+az)/2
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Results for 2-Models with Close Parameters

Design Metric | Sample Time | Bayes Risk
Bayes Optimal | 0.9530 0.4767
MMOpt 0.9530 0.4767
ED 0.9570 0.4767
EID 0.9480 0.4767
API 0.9520 0.4767
D-Optimal 0.9524 0.4767

«  MMopt agrees exactly with Bayes optimal design for this problem
« Designs (ED, EID, API, D-Optimal) are close to Bayes Optimal design

* Not coincidence: for two model responses close enough to differ by a first-
order approximation in a Taylor expansion:
— Maximizing Model response separation is similar to maximizing Fisher information
— Goals of classification and parameter estimation are very similar

e Result (see Appendix): For the 2-Model example, the D-Optimal design (designed for
a-prior mean @ = (a1 + a2)/2) approaches the MMopt design (and Bayes Optimal
Design) asymptotically as the a-prior parameter uncertainty Aa = as — a; becomes

small
16



4-Model Example

« Example where Bayes Optimal Design is too difficult to compute
* Demonstrates usefulness of MMopt design

e Two-Parameters a, b Model Responses
3. r r r ‘L ‘L

y; = n(t;,a,b) + on, |

n(t,a,b) = be =° Model Responses T
» Grid points t=0.05 apart
n; ~ N(0,02) 2 5 P —o-oo apart o
» Designs optimized over time grid
c=0.1
1.5
e Prior: p; =.25, i1=1,...,4
1
Model Parameters
e
# a b 05
\“\\&?& -
1 2| 2625 _ —_—
2 1 06 % 0.5 1 15 2 2.5 3 35 4
3 07| 06 time (s)
4 05| 06
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4-Model Results

Design Metric 2-Sample Times Bayes Risk | Bayes Risk
99%Conf *
MMOpt 0.45 1.4 0.32839 +/- 0.00070
ED 0 0.8 0.37028 +/- 0.00070
EID 0 1 0.36044 +/- 0.00072
API 0 0.95 0.36234 +/- 0.00072
Design Metric 3-Sample Times Bayes Risk | Bayes Risk
99% Conf *
MMOpt 0.45|1.4 |[1.4 0.28065 +/- 0.00067
ED 0 0.7 |0.9 0.32048 +/- 0.00067
EID 0 0 1 0.36034 +/- 0.00072
API 0 0.85 | 0.105 0.3099 +/- 0.00069

MMopt has smallest Bayes Risk of all designs studied
Bayes optimal design is too difficult to compute for this problem

* evaluated based on Monte Carlo analysis using 1,400,000 runs per estimate

18



Experiment Design under Reparametrization

e Typical PK Parameters
V' - Volume of Distribution
K - Elimination Rate
C' - Clearance (C' = VK)

PK Parametrization 1: Volume and Elimination (V, K)

r=—Kz+d, Drugamount x, Dose d

n; = "’”(Vt’i), Drug concentration at time ¢;

PK Parametrization 2: Volume and Clearance (V,C)

t=—(C/V)x+d, Drugamount z, Dose d

n; = :”(";”"), Drug concentration at time ¢;

e Experiment Design under Nonlinear Reparametrization

ED and EID designs are NOT invariant under nonlinear reparametrization (see Appendix)

- In PK example above, ED and EID give different designs depending on whether the
(V, K) or (V,C) parametrization is used

API and MMopt designs are invariant under nonlinear reparametrization (see Appendix)

- “log” in API metric enables invariance (decouples expectation of product into sum)

- MMopt uses model responses directly rather than forming Fisher Matrix

19



PK Population Model with 10 Multiple Model

Points - First-Order PK Model
e First-Order Model

r=—-Kxz+d
ni = #
Yi =1 + 0N,
n; ~ N(0,1)
g; = 0.1
Model Parameters
# K \
1 | 0.090088 | 113.7451
2 | 0111611 | 93.4326
3| 0.066074 | 90.2832
4| 0.108604 | 89.2334
5| 0.103047 | 112.1093
6 | 0.033965 | 94.3847
7 | 0.100859 | 109.8633
8 | 0.023174 | 111.7920
9 | 0.087041 | 108.6670
10 | 0.095996 | 100.3418

Dose input = 300 units for

1 hour, starting at time O

Concentration

Dose Input
( 400

350

300

250

2]
€ 200

B}

150

100

50

\

[
0 5 10 15 20

All subject responses

3.5 T r T
£ Model Responses
Th « Grid points 15 min apart
251 s __+ MMopt optimized over time grid
2 ‘u
15
1I
0.5 -

o

10

15 20
Time (hr)
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Example of MMopt Design with 10 Models
1-Sample-Time Case

All subject responses with optimal 1 sample times Bayes Risk
4 . r r
ov7rbound
. 35
Optimal /
Sampling 3l
Times (hr) \ p /
B
4.2500 5 >° T /
= P -
: B s ——
: AN T
1.5 \
\\\
1 T
= - \\\\\\
0.5 —
ot L i i i L
0 5 10 15 20 25
Time (hr)
t=4.25

21



Example of MMopt Design with 10 Models
2-Sample-Time Case

‘ All subject respgnses with optimal 2 sample times

«  Optimal a5,
Sampling Times %
(hr) -
1.0000

‘h‘ N%
S 2

Concentration
/
%/

1
\‘\\ S o o
0.5 ———
—
of i i i i i
0 5 10 15 20 25
Time (hr)

t=1 t=9.5



Example of MMopt Design with 10 Models:
3-Sample-Time Case

« Optimal - Samples 1 & 2 (duplicated at 1 hr)
Sampling Times i
(hr) 3l ff «— Sample 3 (10.5 hr)

1.0000
251
1.0000 | |
10.5000 5, }
g e N \6%\\ \\
S Z
1 SN -
0.5
) : ; : . _
0 S) 10 15 20 25

Time (hr)

t=1 t=10.5




Example of MMopt Design with 10 Models:
4-Sample-Time Case

* Optimal e
Sampling
Times (hr) .
1.0000 |
1.0000 250
1.0000 5 |
10.7500 %
§ 15
1
0.5

H/ Samples 1,2&3 (triplicate at 1 hr)

L sample 4 (10.75 hr)

Time (hr)

t=1 t=10.75



Comparison Table

ED

EID

API

MMopt

Invariant under regular linear Yes Yes Yes Yes
reparametrization™

Invariant under regular No No Yes Yes
nonlinear reparametrization™

Allows taking fewer than p No No No Yes
samples, p=# of parameters

Can handle heterogeneous No No No Yes
model structures

Gives known optimal solution No No No Yes
to 2-model example

Captures main elements of No No No Yes

minimizing Bayes risk

*Proved in Appendix

25



Summary

Multiple Model Optimal Design (MMOpt) provides an alternative
to Fisher-Information Matrix based design

— Particularly attractive for Nonparametric Models (MM discrete prior)

— Based on true MM formulation of the problem (i.e., classification theory)

— Has many advantages relative to ED, EID and API (see Table summary)

— Based on recent theoretical overbound on Bayes Risk (Blackmore et. al. 2008)

Advantages of MMopt shown using simple 2-Model example
— Both Bayes Optimal design and MMopt maximize Model Response Separation
— MMopt identical to Bayes Optimal Sample design for this problem

— ED, EID and API did not perform well in terms of Bayes Risk unless a-priori
parameter uncertainty is chosen small

— Shown that goals of classification and parameter estimation become
asymptotically similar as prior parameter uncertainty becomes vanishingly small

ED, EID and API designs do not explicitly consider model
response separation

— Blind to the underlying classification problem

— Not as well-suited for nonparametric models

MMopt captures essential elements of Bayes Risk minimization
without the excessive computation

— Targeted to be included in a future release of the USC BestDose software 26
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APPENDIX



Properties of ED-class Designs under Regular* Reparametrization (1/4)

e Fisher Matrix for Parameter vector a

Ma(a: f) = Zm L [8T](ti,@) 5"r,r(t.£-,a):|

i=1 o;(a)? da daT

where,
y; = n(t;,a) + o;(a)n;, Noisy measurement at time ¢,
n; ~ N(0,1), Gaussian measurement noise

¢ ={t1,....,tm}, Experiment design (sampling)

e Evaluate on a = qa,

Ma (aoa é-) é MGL (CE, 5)

=it gi((llo)z |:8'r](g;,a) 8%(2?“)}

a=a,

e Fisher Matrix for Parameter vector b

m 8 i:b 8 i,b
Mb(ba 5) = Zi:l 01-(11))2 { ngb : na(;T )]

e Under Regular Reparameterization® a = f(b) can show

T(b) 2 agb(ﬁ), Differential matrix of transformation

Take determinant,
|Mb(ba g)l — J(b)2|Ma(f(b)7£)|

J(b) 2 |T'(b)|,  Jacobian of transformation

*Mapping a = f(b) is one-to-one and has continuous partial derivatives 31



Properties of Robust D-Optimal Designs under Regular Reparametrization (2/4)

e Robust D-Optimal Designs for Parameter Vector a
ED: £8P 2 argmaxe E, (| M,(a,)|)

A .
EID:  ¢8IP = argming Ea(m)

APL:  ¢API 2 arg maxe E, ( log|M,(a,€)|)

e Robust D-Optimal Designs under Regular Reparametrization a = f(b)

Case I: Mapping a = f(b) is nonlinear

J(D) is non-constant function of b

Case II: Mapping a = f(b) = Fb is linear

J(b) = |F| = const, where F' € RP*P is a square invertible matrix

* Next slides will prove results in following table:

Fisher Matrix M assumed to be non-constant function of @ (i.e., nonlinear problems)

ED EID ELD
Invariant under regular linear | Yes Yes Yes
reparametrization
Invariant under regular No No Yes
nonlinear reparametrization

32



Properties of Robust D-Optimal Designs under Regular Reparametrization (3/4)
e Case I: Mapping a = f(b) is nonlinear
- ED Design
PP 2 argmaxe By ([My(b,€)| ) = argmaxe By (J(6)2|Ma(f(b),6)] )

= arg maxe E, ( J(f_l(a))2|Ma(a,f)| ) # arg maxg Ea( |Ma(aa£)| ) = ng

Hence, P # €8P and ED design is NOT invariant under regular nonlinear reparametriza-
tion

- ED Design

A . 1
EID = arg ming Ej, ( W) = arg ming Eb( J(b)QIMi(f(b),fﬂ )

) -ee

| Mo (a.€)

= argming F, ( J(f—l(a))lg\]\/fa(a,fﬂ ) # argming F, (

Hence, E;)E ID £ ¢EID and EID design is NOT invariant under regular nonlinear reparametriza-
tion

- API Design
{71 2 argmaxe By (log|My(b,€)| ) = argmaxe B, (log (J(5)2|Ma(f(2),€)]) )

= argmaX5( 2E, log J(b) + E, log|Ma(a,§)|) = argmaxg E, log|M,(a,§)| = £2PT

Hence, &1 = ¢APT

tion

and API design IS invariant under regular nonlinear reparametriza-

33



Properties of Robust D-Optimal Designs under Regular Reparametrization (4/4)

e Case II: Mapping a = f(b) = Fb is linear

- ED Design
D A argmaxe By, (| My(b,€)| ) = argmaxe By, (J(b)?[Ma(f(b),€))
= argmaxe E, ( |F|*|M,(a,§)| ) = argmaxe E, ( |[Mg(a,§)] ) = &P

ED _ ¢ED
b _ga

Hence, and ED design IS invariant under regular linear reparametrization

- EID Design

A . i
1P = argming By ( m ) = argming £ ( OUITREOR] )

) —eon

and EID design IS invariant under regular linear reparametriza-

- . ) _ : 1
= argming E, ( [FPM, (@.8)] ) = argming £, ( [Ma(a.0)]

Hence, ¢F1P = ¢BID

tion

- API Design
(P12 argmaxe Fy (log| My(b,€)| ) = argmaxe Ey (log (J(5)2|Ma(£(8),)]) )

— argmax5( 2E, log|F| + E, log|Ma(a,f)|) = argmaxe F, log|M,(a,§)| = ﬁfPI

Hence, {1 = ¢APT

tion

and API design IS invariant under regular nonlinear reparametriza-
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Relation Between MMopt and Fisher Matrix in
2-Model Example with Close Parameters

e Assume model responses 7(t,a1) and n(t,az) can be expanded in a Taylor series about
the mean parameter @ = (a1 + az)/2

n(t,a2) = n(t,@) + 2522 ,—a(as — @) + O(a — @)
nt,a1) =n(t @) + 8”5’;’”’) la=a(a1 — @) + O(ay — @)

e Subtract Taylor expansions and rearrange using Aa = as — a

77(15; CLQ) - T](ta al) = WM:EACL + O(Aa)2

(1(t, az) — n(t, a1))? = (%H:) (Aa)? + O(Aa)?

2
,a9)— ,aq 2 an L, Q
attoespa) _ (o), o) +0(aa

e Last equation relates MMopt Cost to D-Optimal cost, i.e.,
—log MMopt Cost = const |M(a)| + O(Aa)
e Result: For the 2-Model example, the D-Optimal design (designed for a-prior mean a =

(a14a2)/2) approaches the MMopt design (and Bayes Optimal Design) asymptotically
as the a-prior parameter uncertainty Aa = as — a; becomes small
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