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Outline

▸ Motivation

▸ Computationally expensive simulators (computer models)

▸ Chemical kinetics and “design space”

▸ Bayesian inference for expensive simulators

▸ Calibration (parameter estimation)

▸ MCMC via adaptive emulation

▸ Prediction and design space generation

Joint work with Antony Overstall (University of St Andrews, UK) and Kieran Martin
(Office for National Statistics)

Some underpinning methodology can be found in

Overstall and Woods (2013). Biometrics, in press (doi:10.1111/biom.12017)
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Computer modelling

▸ Many physical and social processes can be approximated by
computer codes (simulators) which encapsulate mathematical
descriptions

▸ For example, partial differential equations, solved using e.g.
finite element methods . . .

▸ . . . or “agent-based” simulators, building up the behaviour of
the system from that of individual elements
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Inputs x Outputs y

▸ Embed the simulator within a statistical model, e.g.
y = µ(θ; x) + ε
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Calibrating simulators

▸ Learn about θ from (noisy) data (x,y)

▸ Problem: requires very many evaluations of the expensive simulator

▸ e.g. to evaluate the unnormalised log-posterior density

▸ Solution: build (cheap) approximations to µ as functions of φ

▸ µ̂ is an emulator or surrogate - typically a Gaussian process

▸ replace µ by µ̂ in the calibration problem

(Kennedy & O’Hagan, 2001)
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Chemical kinetics example

Pharmaceutical process from GlaxoSmithKline

Acknowledgements: James Wertman, Mohammad Yahyah, John Peterson
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Chemical kinetics example

A
k1Ð→ 2B +C

B +D + E
k2≡(k

−

2 ,k+2 )←→ B +G + F

F + B
k3Ð→ I + J

▸ Defines a set of differential equations (solve numerically using ode in
R package deSolve)

▸ Incorporate dependance of rate coefficients on temperature, T ,
through the Arrhenius equation

ki = k
(r)
i exp

⎧⎪⎪⎨⎪⎪⎩

E
(a)
i

R
( 1

T
− 1

T (r)
)
⎫⎪⎪⎬⎪⎪⎭

Known constants: T (r) - reference temp.; R - gas constant
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Chemical kinetics example

▸ Control temperature, observation time, volume, starting
concentrations [A], [D], [E]

▸ Measure/model concentrations [E], [F], [I]

▸ Need to calibrate (estimate) θ = (k(r)−2 , k
(r)+
2 , k

(r)
3 ,E

(a)
2 ,E

(a)
3 )

Bates & Wates (1988), Ramsey et al. (2007), PK/PD literature, PODE
community . . .
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Statistical model

Let yij be the 3 × 1 vector of observed concentrations for treatment xi at
time tij , for i = 1, . . . ,n and j = 1, . . . ,ni . Then we assume the following
statistical model

yij = µ(θ;xi , tij) + δ(xij , tij) + ε(tij),

where

δ - Model discrepancy with a Gaussian process prior distribution

ε - Measurement error following a Gaussian distribution with time
dependent correlation

Complete Bayesian model specification with prior distributions for θ and
nuisance parameters defining δ and ε
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Gaussian processes

▸ A stochastic process for which any finite-dimensional sample has a
joint multivariate normal distribution

▸ Popular as a prior distribution over functions in Bayesian
nonparametrics, in machine learning and for building emulators in
computer experiments

If Z(v) ∼ GP(0, κ), with covariance function

κ(v,v′) = σ2 {exp(−
k

∑
i=1

ψi ∣vi − v ′i ∣) + ηI} ,

then z(v1), . . . , z(vn) ∼ N(0,Σ) and Σij = κ(vi , vj)
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Design space

The ICH Q8 core definition of design space: “The multidimensional
combination and interaction of input variables (e.g., material attributes)
and process parameters that have been demonstrated to provide
assurance of quality”1

For illustration, we will define quality through constraints on E, F and I
(in moles):

E < 3

F > 20

I < 3

Ultimately, want to identify the set {x, t ∶ P(E < 3,F > 20, I < 3∣y) > α}

1ICH (2005). ICH Harmonized Tripartite Guideline: Pharma. Develop., Q8.
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General problem

▸ We have n observations, y, from the distribution Y∣φ,x ∼ F(θ)

▸ Vector φ = (θ,ψ) holds

▸ θ - q parameters of interest

▸ ψ - p − q nuisance parameters

▸ The distribution F depends on θ through the simulator, e.g.

E(Yi)∝ µ(θ; xi),

where xi is a k-vector of explanatory variables

▸ Bayesian inference for φ uses the posterior density

π(φ∣y)∝ U(φ) = π(y∣φ)π(φ)
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Approximating the posterior

▸ U(φ) requires evaluating computationally expensive µ(θ; x)

▸ Instead, construct a statistical approximation or emulator using a
few hundred simulator runs

▸ Replace u(φ) = logU(φ) with the emulator in the MCMC

Output dimension Input dimension
u(φ) 1 p⋆

µ(θ;xi) 1 q + k⋆⋆

µ(θ) n q (< p)⋆⋆⋆

▸ Emulating the simulator allows fast prediction and model checking

⋆ Rasmussen (2003), Bliznyuk et al. (2008), Fielding et al. (2011)
⋆⋆ Kennedy & O’Hagan (2001)
⋆⋆⋆ Higdon et al. (2008), Overstall & Woods (2013)
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Adaptive construction of an emulator

Rasmussen (2003) proposed the following algorithm:

(1) Evaluate the simulator for an initial “design” in the input space

(2) Construct an emulator for u(φ)
(3) Augment the design by points sampled from an MCMC method with

target distribution based on the current approximation

(4) Evaluate the simulator for these new points

(5) Return to (2) and repeat until the emulator is sufficiently accurate
or the computational budget is exhausted

▸ At each iteration of (3), the adequacy of the constructed emulator is
checked through comparison with the newly evaluated points

▸ The emulator can then replace u(φ) in subsequent MCMC inference
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Adaptive construction of an emulator

(2) Construct an emulator for u(φ)

Emulate the n-dimensional µ(θ) using a singular value decomposition
and Gaussian Process models

▸ Model µ(θ) via a principal component basis

µ(θ) ≈
m

∑
i=1

biwi(θ)

▸ Fit m GP models to the first (most important) principal component
weights, wi

▸ m is chosen so that the PC basis explains 100d% of the variation
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Adaptive construction of an emulator

(3) Augment the design by points sampled from an MCMC method with
target distribution based on the current approximation

▸ Rasmussen (2003) used Hybrid (Hamiltonian) Monte Carlo

▸ Proposals from the solution to a set of Hamiltonian equations,
discretised with step size δ

▸ Low autocorrelation, high effective sample size (good
space-filling)

▸ Per iteration, requires one evaluation of u(φ) and L evaluations
of ∂u(φ)/∂φ

▸ Fielding et al. (2011) extended the method to include parallel
tempering

▸ Explores multi-modal distributions using parallel tempered
chains

▸ Sample from densities U(φ)1/Tk , k = 1, . . . ,K
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Adaptive construction of an emulator

(3) Augment the design by points sampled from an MCMC method with
target distribution based on the current approximation

HMC and parallel tempering require selection of tuning parameters

▸ If µ(θ; x) is expensive, this can be computationally inefficient

1. Replace HMC with Gibbs sampling with ARMS (Gilks et al., 1995)

▸ Adaptive Rejection Metropolis Sampling
▸ No tuning parameters
▸ Use thinning to reduce autocorrelation

2. Adaptive parallel tempering (Miasojedow et al., 2012) chooses
temperatures to achieve a target acceptance rate

Kinetics
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Synthetic Examples

We compare our proposed method (ARMS and adaptive parallel
tempering) with Fielding et al. (2011) using two synthetic examples:

1. A two-dimensional distribution with non-elliptical contours

2. A seven-dimensional distribution with two modes

▸ Approximate u(θ) directly as there is no simulator here

▸ Compare true density and approximation using Hellinger distance
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Synthetic Examples

For each example:

▸ Initial design has 50 points

▸ Number of temperatures is K = 5

▸ Add an additional 150 points (i.e. 30 iterations of the algorithm)

▸ 20 implementations of each method using different values of

▸ HMC step size, δ, for Fielding et al. (2011)

▸ the number, Q, of MCMC scans discarded between iterations
(thinning)

▸ Repeat each implementation for each method 100 times
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Synthetic Example 1 - non-elliptical contours

The pdf here is:

U(θ)∝ exp(−1

2
uTC−1u)

with

u1 = θ1

u2 = θ2 + κθ2
1 − 100κ

C = diag(100,1)
κ = 0.03
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Synthetic Example 1 - non-elliptical contours

Example 1: non−elliptical contours
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Synthetic Example 2 - bimodal

θ1

θ 2

−4 −2 0 2 4

−
4

−
2

0
2

4

The distribution here
is

1

2
N(m1,0.35I)+1

2
N(m2,0.35I)

with

m1 = (1,1,0,0,0,0,0)
m2 = −m2
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Synthetic Example 2 - bimodal

Example 1: non−elliptical contours
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Conclusions from Synthetic Examples

▸ The proposed method is robust to the degree of thinning

▸ The Fielding et al. (2011) method is very sensitive to the HMC
tuning parameter δ

▸ When successfully-tuned, the Fielding method performs similarly to
our method and is typically faster

▸ However when poorly-tuned, the Fielding method is a poor
approximation, and the computational advantage decreases as the
expense of evaluating the simulator increases

Discussion
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Stages in constructing a design space

1. Generate a sample from the posterior distribution of the model
parameters (including θ) using MCMC methods

▸ Gibbs sampling and Metropolis-Adjusted Langevin Algorithm
(MALA; Girolami & Calderhead, 2011)

▸ Emulate µ(θ) = [µ(θ; x1, t11), . . . ,µ(θ; xn, tnnn)] as a function
of θ

2. For each MCMC-sampled parameter vector (b = 1, . . . ,B), generate
a prediction, y(b), from the statistical model, for a setting of the
factors

▸ Emulate µ(θ; x, t) as a function of θ, x, t (Conti & O’Hagan,
2010)

3. Calculating the proportion of the predictions {y(1), . . . ,y(B)} that
satisfy the constraints.
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Chemical kinetics - data

Initial amounts
Temperature (○C) Volume (L) A (moles) D (moles) E (moles)

1 25.00 31.31 22.50 91.59 26.47
2 25.00 32.56 45.00 91.59 26.47
3 40.00 31.28 22.50 91.50 26.45
4 40.00 32.53 45.00 91.50 26.45
5 32.50 31.88 33.75 91.40 26.42
6 32.50 31.88 33.75 91.40 26.42
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Chemical kinetics - diagnostics
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Chemical kinetics - diagnostics
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Chemical kinetics - posterior densities
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Design space - E < 3
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Design space - F > 20
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Design space - I < 3
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Overall design space
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Discussion

▸ MCMC inference for computationally expensive simulators via
adaptive construction of a Gaussian Process emulator

▸ Gibbs sampling with ARMS reduces tuning

▸ Emulating the simulator, rather than the unnormalised
log-posterior, allows fast prediction and model checking

▸ Chemical kinetics and design space

▸ Fast generation of design spaces

▸ Extend to population models and random effects: separate
emulators for each run

▸ The proposed Bayesian inference methods are implemented in an R

package bayxcomp

Synthetic examples
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Hybrid (Hamiltonian) Monte Carlo

▸ HMC evolves an artificial dynamic system on an augmented
parameter space according to a set of Hamiltonian equations whose
numerical solutions form the next proposed value in a chain

▸ HMC is typically superior to Metropolis-Hastings (e.g. random-walk
or Gibbs sampling) in terms of autocorrelation and effective sample
sizes

▸ However you need to specify two tuning parameters:

▸ δ - step size

▸ L - number of steps

▸ Typically, fix L and vary δ
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Parallel tempering

▸ Parallel tempering sets up K MCMC chains where the primary chain
samples from the posterior and the other chains sample from
increasingly diffuse versions of the posterior given by

Uk(θ)∝ U(θ)1/Tk = exp (u(θ)/Tk) ,

where 1 = T1 < ⋅ ⋅ ⋅ < TK are the temperatures

▸ There are then swap moves between the different chains

▸ This allows large moves performed at the higher chains to be passed
down to the primary chain
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Adapting the parallel tempering

▸ To specify the temperatures, T1, . . . ,TK , in the parallel tempering
we use the adaptive parallel tempering scheme proposed by
Miasojedow et al. (2012)

▸ This adapts the temperatures so that the acceptance rates between
the chains reaches a target value, α∗ = 0.5

▸ The amount of adaption diminishes as the number of iterations
increases.
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Gibbs sampling with ARMS

▸ As an alternative to HMC we propose the use of Gibbs sampling
with adaptive rejection Metropolis sampling (ARMS, Gilks et al.,
1995) as an alternative MCMC method to HMC for selecting the
next design points

▸ A scan of the Gibbs sampling algorithm involves updating each
element of θ

▸ We generate θi from the full conditional distribution, i.e. θj ∣θ/j ,y

▸ The full conditionals will not be known distributions but we can use
ARMS to sample from them.

▸ ARMS is an extension of rejection sampling, with an adaptive
proposal distribution

▸ It has no tuning parameters.
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Gibbs sampling with ARMS

▸ However in a cheap-u(θ) problem the advantage of HMC over Gibbs
sampling is that it will have lower autocorrelation and higher
effective sample size

▸ To counteract this, we use the equivalent of thinning, i.e. we repeat
the scan Q times

▸ Q might now be considered a tuning parameter

▸ Synthetic examples show that our proposed method is largely
insensitive to the choice of Q
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Assessing emulator adequacy

▸ Extend univariate measure of Bastos & O’Hagan (2008, Tech.) to
multivariate output

▸ Assess the predictive performance of the emulator after iteration j
using nK simulator runs from iteration j + 1

Rj+1 =
K

∑
k=1

n

∑
l=1

(µ(φj+1
k ; xl) − µ̂(φj+1

k ; xl))
2

v̂(φj+1
k ; xl)

,

▸ v̂ is the estimated variance of µ̂

▸ Rj+1 approximately follows a χ2
kn distribution
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Bayesian model checking

1. Use MCMC sample θ1, . . . ,θB to generate predictions ỹ1, . . . , ỹB

from π(y∣θj)
▸ Compare observations and predictions graphically

2. Pivotal Discrepancy Measures (PDM; Yuan & Johnson, 2012,
Biometrics)

▸ For each of the B MCMC iterations, partition residuals
according to value of µ(φj)

▸ Within each partition, bin into cells according to the
distribution of the standardised residuals

▸ Calculate a χ2 statistic for each partition, and sum across the
partitions to obtain the PDM

▸ Obtain “p-value” from the sample of B PDMs; < 0.25 provides
evidence of model inadequacy
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