

Minimal cost designs for an early phase clinical study

Lee Kien Foo Stephen Duffull

School of Pharmacy University of Otago

Introduction

- Designs for PKPD studies mainly focus on improving the precision of parameter estimation
 - By optimising dose, dosing regimen and/or sampling schedule
- Upper boundary of the design space \rightarrow most precise estimates
- A cost penalty has been incorporated in optimal design methods but as a design constraint ^[1-4]
 - Studies are penalised for number of patients and blood samples but not for study failure
- An empirical value of power is usually chosen *a priori*, often 80%

[1] Mentré M et al. *Biometrika*. 1997;84:429–442.

[2] Retout S et al. *Communication in Statistics*. 2009;8:3351–3368.

[3] Gagnon R et al. Journal of Biopharmaceutical Statistics. 2005;15:143–163.

[4] Bazzoli C et al. www.page-meeting.org/?abstract=1710.

Phase II clinical studies

- The drug is tested in target patients for the (usually) first time
- Explore dose effect relationship and assess for safety
- Population PK explored in phase I study of healthy volunteers, and then applied to design a phase IIa study
- PK of healthy volunteers (prior) = PK of patients (target)?
- How to best design the study when we have uncertainty about the underlying structure of dose-response?

The balance between cost and power

- If we don't consider cost then the upper boundary of ethical constraints provides the best design
- Penalising cost reduces precision and increases the risk of failure
- Setting power *a priori* is arbitrary, what is the best power?
- What does power mean from a cost perspective?
- It is often assumed: cost ∞ power & power ∞ cost

Aims

- To determine if a design exists that
 - Naturally balances the cost of a clinical study with the probability of study success
 - Without arbitrary constraints on the design space
 - Without the need to define power a priori
- To determine the influence of different cost structures on the design

Design variables

$$\boldsymbol{\xi} = \left\{ Np, Ns, DDD, Ts \middle| Ns \right\}$$

Np = number of patients

Ns = number of samples per patient

DDD = defined daily dose

Ts/Ns = blood sampling times conditioned on number of samples per patient

Expenditure

• For each patient:

Expenditure for samples = sampling days $\times Ns \times Cs$

Expenditure for drug = study duration (days) $\times DDD \times Cd$

• Resource expenditure of a study:

 $X(\xi) =$ $[Np \times (Cp + Expenditure for samples + Expenditure for drug)]$

Cost of a study

$$Cost = \begin{cases} X(\xi) ; & study successfu \\ X(\xi) + X(\xi_0) + X(TP) ; study failed \end{cases}$$

 $X(\xi_0)$: cost to redo the study using a previous empirical (and more intensive) design

X(TP): cost for time penalty

Hypothetical example

- Phase II like clinical study for a drug
- All patients received the same dose of drug given orally
- Dosing schedule = 3 doses at 24 hours dose interval
- Therapeutic range of the trough response for the 3rd dose is defined based on prior biomarker data [0.3 unit/L, 1.3 unit/L]
- The study is successful if > 60% of patients have trough response within the range
 - In this case response is concentration

The Model

$$C_{ij} = f(ka_{i}, CL_{i}, V_{i}, t_{ij}, DDD) \times e^{-\varepsilon_{p_{ij}}} + \varepsilon_{a_{ij}}$$

$$f(ka_{i},k_{i},t_{ij},DDD) = \frac{DDD \times ka_{i}}{V_{i} \times (ka_{i} \quad k_{i})} \times \frac{e^{\begin{pmatrix} k_{i} \times t_{ij} \end{pmatrix}} \left[1 \quad e^{\begin{pmatrix} dn \times k_{i} \times di \end{pmatrix}}\right]}{1 \quad e^{\begin{pmatrix} k_{i} \times di \end{pmatrix}}} \frac{e^{\begin{pmatrix} ka_{i} \times t_{ij} \end{pmatrix}} \left[1 \quad e^{\begin{pmatrix} dn \times ka_{i} \times di \end{pmatrix}}\right]}{1 \quad e^{\begin{pmatrix} ka_{i} \times di \end{pmatrix}}}$$

$$k_i = \frac{CL_i}{V_i}$$
 $\boldsymbol{\theta}_i = \begin{pmatrix} ka_i & CL_i & V_i \end{pmatrix}^{\mathrm{T}}$

$$\log(\mathbf{\theta}_i) \sim N\left(\log \overline{\mathbf{\theta}}, \mathbf{\Omega}\right) \qquad \varepsilon_{p_{ij}} \stackrel{iid}{\sim} N\left(0, \sigma_p^2\right) \qquad \varepsilon_{a_{ij}} \stackrel{iid}{\sim} N\left(0, \sigma_a^2\right)$$

Describing Uncertainty

- Population PK parameters: $\Phi_0 = (\overline{\theta}, \Omega, \sigma^2)$
- Hyperprior distribution

 $\overline{\mathbf{\theta}} \sim N(\mathbf{\mu}, \mathbf{\Sigma})$ $\mathbf{\Omega} \sim IW(\mathbf{R}, \nu)$ $\sigma^2 \sim IG(a, b)$

- Hyperprior parameter: $\mathbf{H} = \{ \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{R}, \nu, a, b \}$
- If the point estimates and the variance-covariance of the population PK parameters are available, the values of hyperparameters can be computed^[1]

[1] Dokoumetzidis et al. Journal of Biopharmaceutical Statistics. 2008;18:662–676

Simulation Study

• Population PK estimates from phase I study:

$$\hat{\overline{\mathbf{\theta}}} = (1, 0.03, 1)^{\mathrm{T}}$$
 $\hat{\mathbf{\Omega}} = \begin{bmatrix} 0.1 & 0 & 0\\ 0 & 0.1 & 0\\ 0 & 0 & 0.1 \end{bmatrix}$ $\hat{\sigma}_p^2 = 0.1 \quad \hat{\sigma}_a^2 = 0.05 \text{ (fixed)}$

• Hyperprior distribution

$$\overline{\mathbf{\theta}} \sim N(\mathbf{\mu}, \mathbf{\Sigma})$$
 $\mathbf{\Omega} \sim IW(\mathbf{R}, \nu)$ $\sigma_{prop}^2 = IG(a, b)$

Assumptions

- We consider that ethical constraints and recruitment issues can be handled by penalising the cost per blood sample
- There was one elementary design for the study, which means one sampling schedule for all patients
- A failed study would be repeated with an empirical design
- Note we do not formally consider power in this analysis as we only consider the case where the drug works and alpha error therefore is not considered.

Procedure

Simulation Study

	Unit cost	Empirical design	Upper bound
Patient	\$10000	70	100
Blood sample	\$100 \$500 \$1000	8	35
DDD	\$10	1	6

Result

	Cs	Np	Ns	DDD	\$	Prob of success
No time penalty	100	33	18	3	582,520	0.918
	500	46	8	3	1,185,771	0.890
	1000	58	6	3	1,884,100	0.893
With time penalty	100	38	17	3	618,980	0.968
	500	53	8	3	1,279,500	0.953
	1000	63	6	3	2,012,600	0.932

- Design for cost minimisation naturally results in study with appropriate power
- High prob success ≠ high cost & high cost ≠ high probability of success even when the design is optimised
- Setting power *a priori* did not ensure the best design
- Cost minimisation design is a more sensible way to design study

Conclusion

- There exists an optimal design that naturally balances the cost of a clinical study with the probability of study success
 - Without arbitrary constraints on the design space
 - Without the need to define the power *a priori*
- The design changed with different cost structure

Acknowledgements

- School of Pharmacy
- University of Otago (PhD scholarship)
- Otago pharmacometrics group members