

An industry perspective on PODE

Martin Fink Pharmacological Modeler Modeling & Simulation, Novartis

Overview Optimal design reality and wish list

- Introduction
- PODE knowledge & software use
 - P"O"DE
 - Limited resources and thus uptake of tools

Examples

- Various slightly modified examples
- Wish list
 - ...

PODE in Pharma Industry

- Study design essential for study success, but...
- When to use PODE in Pharma Industry?
 - In research and early development phases rather rich sampling
 - In late phases in clinics shift to clinical endpoints (e.g., only troughs)
 - ... so, of little use?
- How much flexibility is there for sampling time points?
- Valuable in specialized trials where modeling is used as primary analysis
 - E.g., bridging to special population (pediatrics, genetics,...)

PODE versus P"R"DE or P"G"DE

What is the biggest need for Pharma?

PODE: Optimal design?

- Restrictions in possible sampling times (in clinics)
- Primary analysis is not model based
- Too many uncertainties (model structure and parameter estimates)
- "R" for robust or "G" for good-enough
 - Given a design how good would be my parameter estimates?
 - Which part of the study informs which part of the model?
 - Design should be good enough to extract the information
- Often we "evaluate" designs but do not "optimize"

PODE knowledge

Theory is known, practice is often simulation-estimation

- Academic interactions/trainings provide basic knowledge
 - Basic knowledge is present
 - Theory not fully understood
- Mostly: Design evaluation Nonmem simulation-estimation
- Why?
 - Need for "optimal" design not that apparent
 - Learning curve for "new tools and methods"
 - Run-times (ODEs) and stability of tools (PFIM)
 - Using scripts for batch jobs not straight forward
 - Testing sensitivity to parameter choices using batch scripts

- Experience with sensitivities and generalized sensitivities
- Coming from the non-stats world

- Got stuck in "R" and thus with PFIM
- No hands-on training thus self-taught
- To understand PODE and PFIM
 I started re-programming bits and pieces

- Innovative study design
- Model identifiability (PK/PD binding model)
- Sample size for estimating PK/PD model paramters
- Sample time "optimization"
- Complex example "downsized" for PFIM
- PK/PD example for training purposes

Evaluation of innovative study design

- Development of innovative study design
 - Most interesting and most exciting example
- Batch script for testing different models and parameters
- Running various different scenarios
- Still, all done on "evaluation" not "optimization" due to restrictions on possible sampling time points

Model identifiability of PK binding model

Estimability of peripheral volume?

Objectives

- Primary: Improve PK Binding Models
- Secondary: Estimate Interstitial Volume

Two Compartment PK Binding Model Comparatively Complex

PK binding models are comparatively complex, e.g.:

$$\frac{d}{dt} \begin{pmatrix} TD_{c} \\ TD_{p} \\ TL_{c} \\ TL_{p} \end{pmatrix} = \begin{pmatrix} CL_{D}/V_{c} & PS_{D}/V_{p} & 0 & 0 \\ 0 & 0 & \frac{CL_{L}}{V_{c}} & \frac{PS_{L}}{V_{p}} \\ 0 & 0 & \frac{CL_{L}}{V_{c}} & \frac{PS_{L}}{V_{p}} \\ 0 & 0 & \frac{(1-\alpha_{L})PS_{L}}{V_{c}} & 0 \end{pmatrix} \begin{pmatrix} TD_{c} \\ TD_{p} \\ TL_{p} \\ TL_{p} \end{pmatrix} + \begin{pmatrix} P_{D} \\ 0 \\ P_{L} \end{pmatrix} \\ \\
\frac{d}{dt} \begin{pmatrix} TD_{c} \\ TD_{p} \\ TL_{c} \\ TL_{p} \end{pmatrix} = \begin{pmatrix} CL_{D}/V_{c} & PS_{D}/V_{p} & 0 \\ (1-\alpha_{D})PS_{D}/V_{c} & 0 & 0 \\ 0 & 0 & \frac{f_{c}(.)CL_{p}+(1-f_{c}(.))CL_{L}}{V_{c}} & \frac{f_{p}(.)PS_{D}+(1-f_{p}(.))PS_{L}}{V_{p}} \\ 0 & 0 & \frac{f_{c}(.)(1-\alpha_{D})PS_{p}+(1-f_{c}(.))(1-\alpha_{L})PS_{L}}{V_{c}} & 0 \\ \end{pmatrix} \begin{pmatrix} TD_{c} \\ TD_{p} \\ TL_{p} \end{pmatrix} + \begin{pmatrix} P_{D} \\ 0 \\ 0 \\ P_{L} \end{pmatrix} \\ \\
 Binding \\ \\
 F_{c}(.) = f(TD_{c}, TL_{c}, V_{c}, K_{D}) \\ f_{p}(.) = f(TD_{p}, TL_{p}, V_{p}, K_{D}) & f(TD, TL, V, K_{D}) = \frac{1}{2} \Big((K_{D}V + TD + TL) - \sqrt{(K_{D}V + TD + TL)^{2} - 4TDTL} \Big)
 \end{cases}$$

- Closed form solutions of the integrals are at least difficult to obtain.
- What can/should be estimated?

13 | PODE in Pharma Industry | Mar 2012 | Martin Fink

PFIM to assess PK binding models Setting up the trial

- PK study with 2 hours infusion, study arms at different concentrations and comparatively rich sampling:
 - # Rich sampling: sampling times (days) for each elementary design obs <- c(c(0,0.5,2,4,12)/24,1,2,4,7,14,21,28,35,42,56,70,84)
 - # 6 different doses in mg/kg times 70kg
 - doses<-c(0,0.1,0.3,1,3,10)*70
 - # 5 subjects for each elementary design
 - subjects<-rep(6,5)

PFIM to assess PK binding models

Good estimates of fixed effects and most random effects

Results: Expected Standard Errors:

- ------ Fixed Effects Parameters ----- Beta StdError CV .
- CLD 0.161 0.009792566 6.082339 %
- VD 3.130 0.147423975 4.710031 %
- CLL 18.500 2.419213480 13.076830 %
- RLI 7.090 0.820998986 11.579675 %
- VP 20.000 2.709554573 13.547773 %
- PSD 0.434 0.046964660 10.821350 %
- PSL 0.408 0.038539732 9.446013 %
- KD 0.635 0.087186612 13.730175 %
- ALD 0.100 0.010556939 10.556939 %
- ALL 0.700 0.080323249 11.474750 %
- ----- Variance of Random Effects -----
- Omega StdError CV.
- CLD 0.1010 0.02722802 26.95843 %
- VD 0.0599 0.01711995 28.58089 %
- CLL 0.4350 0.12717323 29.23522 %
- RLI 0.3610 0.10027314 27.77649 %
- VP 0.0663 0.10358684 156.23958 %
- PSD 0.1140 0.06187876 54.27962 %
- PSL 0.1140 0.05469142 47.97493 %
- KD 0.4720 0.14240457 30.17046 %
- ALD 0.1000 0.05979315 59.79315 %
- ALL 0.1000 0.05951293 59.51293 %

15 | PODE in Pharma Industry | Mar 2012 | Martin Fink

Conclusions:

- It might be possible to fit peripheral volume and reflection coefficients for the drug and the ligand in two compartment PK binding models.
- In favorable cases, the fitted peripheral volumes might provide estimates of the interstitial volumes.
- PFIM may be used to assess over-parametrization.

Sample size for dose-range studies

Dose-range studies for PK/PD model *Goal: choose sample size such that %CV < 20%*

- Using PK/PD model with indirect response (ODE)
- Question to answer:
 - Sample size per group to obtain parameter estimates for popPK/PD model with %CV < 20% for population parameters
- The general design was fixed
 - 5 dose groups
 - Sampling time points given

Good results for n=10 - except for SC₅₀

The approach worked, but with very long runtimes

- For n=10 per group
- 24 min for EVAL
- To optimize > 3 days
 - Run was stopped
- PFIM sample size changes with sqrt(n) as for linear model...

	Beta	StdError		RSE	
ka	0.20	0.03169188	15.	845939	%
Cl	15.00	0.88000480	5.	866699	%
V1	900.00	117.04749065	13.	005277	%
Q	45.00	4.69713995	10.	438089	%
V2	2200.00	198.71992989	9.	032724	%
Rin	1.60	0.24227734	15.	142334	%
kout	0.90	0.16013657	17.	792953	%
Imax	0.87	0.07598339	8.	733723	%
C50	0.35	0.09720602	27.	773147	0

	Omega	StdError		RSE	
ka	0.15	0.04234990	28.	23326	%
Cl	0.14	0.03172233	22.	65881	%
V1	0.06	0.01987237	33.	12062	%
V2	0.11	0.05619632	51.	08756	%
Rin	0.06	0.05889112	98.	15186	%
kout	0.14	0.07201611	51.	44008	%
C50	0.34	0.19101526	56.	18096	%

Sample time optimization in PKPD model

Indirect response model Monkey PK/PD study of monoclonal antibody

- Support design of PK/PD study in monkeys
 - Dose was selected from previous experience
 - Sample size was calculated for AUEC (based on Nonmem simulations)
 - Optimal sampling time points...?
- But, no BLQ implemented in PFIM
 - Additive error included to mimic BLQ
- Too many possible time points to select
 - Fedorov-Wynn algorithm crashed (memory issue)
 - Simplex algorithm too slow

Indirect response model Monkey PK/PD study of monoclonal antibody

Rather "qualitative" optimization

Investigated sampling time points in different intervals

Table 5-5

Smaxr.s.e

SC50 r.s.e

Figure 5-9

Sampling schedule PD

- Partial derivatives would have been beneficial
- Only one dose
 - Difficult for turnover model
 - Main info not at 50% recovery!
 - Start of recovery is most informative

Expected relative standard errors for model parameters using

29.6%

48.7%

+5 samples

+12,17,19,23,25

Dense

24.1%

41.1%

,22,24,26,...,56

0.0035,0.29,1,2,3,...,20

different sampling schemes Proposed design

0.0.0035.0.29.1.2.4.7.9

,14,21,28,35,42,49,55

32.9%

56.9%

Sample time optimization in PK model

PK sampling schedule for PhIII Limited samples, mainly around first dose

- Oral formulation
 - High inter-occasion variability on bioavailability
- Multiple doses
 - Team only wanted rich sampling after first dose
 - 3 trough samples planned at steady state
- What precision could we expect to get on the parameters for our model developed for healthy volunteers?
- Not out-of-the-box to combine first dose with steady-state solution

An optimal design approach (PFIM) was used to assess alternative designs for PK sampling

- A rich design was used as a benchmark
 - 15 samples on D1 + 3 trough samples at steady state (C1D1: 0.50, 0.75, 1, 1.25, 1.50, 1.75, 2, 4, 5, 6, 8, 10, 12, 16, 24 hours post dose + 3 trough at steady state)
 - Several sparser designs were compared to this

Limitations

- Simplified version of population model developed based on previous data was used
 - 2 compartment model with 1st order absorption
 - Due to software limitation the original model needed to be simplified
 - IOV on F was removed
 - Lag-time was set to 0
 - Higher residual error for early time points post dose was removed
 - IIV parameters, ka and proportional error component were re-estimated to compensate for the above simplifications. The model fits with the simplified model were over all similar to the original model.

Suggested design: Repeated sampling on D1 followed by trough samples at steady state

- Suggested sampling for PK
 - 4 samples on D1 (e.g. 1, 2, 6, 10 hours post dose)
 - The later the 4th sample on D1 the better
 - 3 trough samples at steady state (must not be on subsequent days)

- Predicted parameter precision is expected to be reasonable with a relatively sparse sampling schedule
- Repeated trough samples will give some information about IOV although this was not in the model used for optimization

Teaching indirect response models

Indirect response models

Two PK/PD examples for comparison: inhibiting kin & stimulating kout

2 models with similar dynamics

28 | PODE in Pharma Industry | Mar 2012 | Martin Fink

Indirect response models Expected standard errors from myPFIM

Inhibition of kin

Fixed	effect	parame	ters		
= = =	= = =	= = = =	= =		
	Value	StdErr	RSE(%)		
ke	0.05	0.00252	5.03		
Base	1.00	0.10237	10.24		
kout	0.40	0.04575	11.44		
Emax	0.95	0.06656	7.01		
EC50	5.00	0.76943	15.39		
				I	
Random	n effec	ct param	eters (I	IV/BSV)	
= = =	= = =	= = = =	= = = =	= = = =	
	Value	StdErr 1	RSE(%)		
ke	0.25	0.0356	14.3		
Base	1.00	0.1463	14.6		
kout	0.60	0.1600	26.7		
Emax	0.35	0.0581	16.6		
EC50	0.20	0.2674	133.7		
Residu	al eri	ror			
= = =	= = =	= =			
		Valu	e StdErr	RSE(%)	
С	lonc pi	.0 qo	2 0.0071	3.55	
Resp	onse a	add 0.	2 0.0106	5.28	Mimic LOQ
Respo	nse pi	.0 go	2 0.0189	9.47	
Subjec	ts per	r arm			
= = =	= = =	= = =			
33 su	bjects	s per ar	m		

Stimulation of kout

```
Fixed effect parameters
Value StdErr RSE(%)
  ke 0.05 0.00252
                     5.03
Base 1.00 0.10241 10.24
kout 0.40 0.08057
                    20.14
Emax 8.00 1.17654 14.71
EC50 50.00 10.07166 20.14
Random effect parameters (IIV/BSV)
. . . . . . . . . . . . . . . . . . .
     Value StdErr RSE(%)
  ke 0.25 0.0356 14.3
Base 1.00 0.1464 14.6
kout 0.60 0.4438
                   74.0
Emax 0.25 0.1211
                   48.4
EC50 0.10 0.2465 246.5
Residual error
_ _ _ _ _ _ _ _ _
              Value StdErr RSE(%)
    Conc prop
              0.2 0.00711
                             3.55
 Response add
              0.2 0.00956
                             4.78
               0.2 0.01867
Response prop
                             9.34
Subjects per arm
_ _ _ _ _ _ _ _ _ _
33 subjects per arm
```

Indirect response models

Sensitivities of the PD with respect to changes in parameters

2 models with similar dynamics

Stimulation of kout

30 | PODE in Pharma Industry | Mar 2012 | Martin Fink

Indirect response models

Samples taken only for the initial 42 days – incomplete recovery

Not enough time to wait for recovery (or turnover wrongly estimated)
 Stimulation of kout

Indirect response models – Only initial samples Remove time points or set additive error for BLQ – always biased

- Samples taken only for the initial 42 days
 - All doses (33 subjects/dose)

High dose (99 subjects)

Medium dose (99 subjects)

Fixed effect parameters

= = =	= = =	= = = = =	=
	Value	StdErr	RSE(%)
Base	1.00	0.10418	10.42
kout	0.40	0.08112	20.28
Emax	8.00	1.27929	15.99
EC50	50.00	12.79278	25.59

Response add 0.2 0.0105 5.27

Fixed effect parameters

		-	
= = =	= = =	= = = = =	=
	Value	StdErr RS	SE(%)
Base	1.00	0.10444	10.44
kout	0.40	0.09375	23.44
Emax	8.00	1.74145	21.77
EC50	50.00	17.58582	35.17

Response add 0.2 0.0115 5.76

Indirect response models Summary

- Substantial differences between inhibition of kin and stimulation of kout
 - Inhibition has information on kout at initial depletion phase
 - Emax could be fixed to 1 (if reasonable) => no estimate needed
- Essential to include recovery phase
 - Important to cover where the response recovers
 - Important to cover return to steady state (but more for understanding disease progression / change of system)
- Difficulty to include values of BLQ in optimal design (currently)

Wish list

To increase the uptake in Pharma Industry

- Scriptable examples
- Short runtimes with ODEs
- Clear and flexible interface
 - Inter-occasion-variabilities
 - Fixing some parameters while still estimating their variabilities
 - Plot of solution & sensitivities
 - Clear output structure to be able to plot additional graphs or do additional analyses
- Hands-on training
- Do we need the "optimization"?