Prediction of shrinkage of individual parameters using the Bayesian information matrix in nonlinear mixed-effect models with application in pharmacokinetics

F. Combes (1,2,3)

S. Retout (2), N. Frey (2) and F. Mentré (1)

PODE 2012

 (1) INSERM, UMR 738, Univ Paris Diderot, Sorbonne Paris Cité, Paris, France
(2) Pharma Research and Early Development, Translational Research Sciences, Modeling and Simulation, F. Hoffmann-La Roche Itd, Basel, Switzerland
(3) Institut Roche de Recherche et Médecine Translationnelle, Boulogne-Billancourt, France

EROT

Outline

- 1. Context
- 2. Objectives
- 3. Materials and methods
- 4. Results
- 5. Conclusion & perspectives

Context

Non-linear mixed effect models (NLMEM)

• Individual statistical model

$$y = f(\theta, \xi) + \varepsilon$$
 with $\xi = \{t_1, \dots, t_n\}$

$$\begin{aligned} \theta &= g(\mu, \eta) \quad \eta \sim \mathcal{N}(0, \Omega) \\ g(\mu, \eta) &= \mu + \eta \text{ or } g(\mu, \eta) = \mu e^{\eta} \\ \varepsilon \sim \mathcal{N}(0, \Sigma(\theta, \xi)) \end{aligned}$$

- Fixed effects $\mu = (\mu_1, ..., \mu_p)$
- Variance-covariance matrix from random effects $\Omega = diag(\omega_1^2, ..., \omega_p^2)$
- Variance of residual error $\Sigma(\theta, \xi) = diag((\sigma_{inter} + \sigma_{slope}f(\theta, \xi))^2)$
- Population parameters Ψ estimated by Maximum Likelihood (ML) approach

Context

Individual parameters estimation by MAP

- In Bayesian methodology, estimating θ is similar as estimating η
- η are estimated as the Maximum a posteriori (MAP)

$$\hat{\eta} = argmax(p(\eta|y)) = argmax\left(\frac{p(y|\eta) \times p(\eta)}{p(y)}\right)$$

Bayesian information Matrix

$$BMF(\xi) = -E_{\eta} \left(\frac{\partial^2 \log(p(\eta|y))}{\partial \eta \partial \eta^T} \right)$$
$$= -E_{\eta} \left(E_{y|\eta} \left(\frac{\partial^2 \log(p(y|\eta))}{\partial \eta \partial \eta^T} \right) - E_{\eta} \left(\frac{\partial^2 \log(p(\eta))}{\partial \eta \partial \eta^T} \right)$$

 Individual parameters are used to predict response, to select covariates and to draw diagnostics plots

Context *Shrinkage*

- For each subject, $\hat{\eta}$ is influenced by the amount of individual information
 - A priori: normal distribution with zero mean
 - Rich design: *a posteriori* distribution with small standard deviation and a true mean
 - Sparse design: *a posteriori* distribution with high standard deviation and mean away from the true value

Individual *a posteriori* distribution of $\hat{\eta}_k$

- A priori
- Rich design
- Sparse design

Context

Observed shrinkage

- Savic and Karlsson proposed a measure of shrinkage based on the dispersion of $\hat{\eta}_k$ in N patients

$$Sh_k = 1 - \frac{Var(\hat{\eta}_k)}{\omega_k^2}$$

- A priori distribution:

$$Var(\hat{\eta}_k) = \omega_k^2 \Leftrightarrow Sh_k = 0 \%$$

– Rich design:

 $Var(\hat{\eta}_k) \le \omega_k^2 \Leftrightarrow Sh_k \le 40 \%$

– Sparse design:

$$Var(\hat{\eta}_k) \ll \omega_k^2 \Leftrightarrow Sh_k \ge 50 \%$$

Savic R, Karlsson M. Importance of shrinkage in empirical Bayes estimates for diagnostics: problems and solutions. *The AAPS J*, 2009;11(3):558-69

 $\hat{\eta}_k$ distribution for N subjects

- A priori
- Rich design
- Sparse design

6

Context

Consequences of shrinkage

- Change of distribution shape (non-normal) of $\hat{\eta}$
- Significant change in the mean value of $\hat{\eta}$ (different from 0)
- Correlation between random effects may be hidden or induced
- Covariate relationships may be hidden or induced

Problems in individual estimates when shrinkage is over 50%

- > Approximate BMF using first-order linearization
- Describe relationship between BMF and shrinkage
- > Evaluate by simulation BMF and link with shrinkage

Design evaluation and optimization in NLMEM

- Design evaluation and optimization based on Rao-Cramer inequality: MF^{-1} is the lower bound of estimation variance
- Individual estimation: Individual Fisher information Matrix

 $IMF(\theta,\xi) = F(\theta,\xi)^T \Sigma(\theta,\xi)^{-1} F(\theta,\xi)$

with $F(\theta, \xi) = \frac{\partial f(\theta, \xi)}{\partial \theta^T}$

- Population estimation: Population Fisher information Matrix (PMF)
 - evaluated using First-Order linearization (FO)
 - implemented in R in PFIM 3.2

Retout S, Mentré F, Bruno R. Fisher information matrix for non-linear mixed-effets models: evaluation and application for optimal design of enoxaparin population pharmacokinetics. *Stat Med*, 2002;21:2623-39

Bayesian design evaluation

• Bayesian estimation of individual random effects

$$BMF(\xi) = E_{\eta} \big(IMF(g(\mu, \eta), \xi) \big) + \Omega^{-1}$$

- Two methods
 - Simulate η to compute E_{η} by Monte-Carlo simulation (MC)
 - FO
 - for additive random effects

$$BMF(\xi) = F(\mu,\xi)^T \Sigma(\mu,\xi)^{-1} F(\mu,\xi) + \Omega^{-1}$$

• for exponential random effects $BMF(\xi) = M^T F(\mu, \xi)^T \Sigma(\mu, \xi)^{-1} F(\mu, \xi) M + \Omega^{-1}$

with $M = diag(\mu_1, ..., \mu_p)$

Shrinkage in linear mixed effects model

• In linear mixed effects modeling

$$y(\xi) = F(\xi)\theta + \varepsilon$$

with $\theta = \mu + \eta$, $\eta \sim \mathcal{N}(0, \Omega)$, $\varepsilon \sim \mathcal{N}(0, \Sigma)$

• ML estimate of $\boldsymbol{\theta}$

$$\hat{\theta}_{ML} = IMF(\xi)^{-1}F(\xi)^T y$$

• Bayesian estimate of θ

$$\hat{\theta}_{MAP} = (IMF(\xi) + \Omega^{-1})^{-1} (IMF(\xi)\hat{\theta}_{ML} + \Omega^{-1}\mu)$$

Fedorov F. Mixed models: design of experiments. Presented at *Isaac Newton Institute for Mathematical science*, Design and Analysis of Experiment, Cambridge, UK. August 2011

Shrinkage in nonlinear mixed effects model

• $W(\xi) = (IMF(\xi) + \Omega^{-1})^{-1}\Omega^{-1}$

Then $\hat{\theta}_{MAP} = W(\xi)\mu + (I - W(\xi))\hat{\theta}_{ML}$

 $W(\xi)$ quantifies the balance between prior and individual information

• For nonlinear mixed effects models, using FO

 $W(\xi) = BMF(\xi)^{-1}\Omega^{-1}$

 $W(\xi)$: normalized variance of estimation

Simulated example

• Monocompartimental IV PK model with non-saturable elimination

$$-\mu_{\rm V} = 0.2$$
 $-\mu_{\rm CL} = 0.5$

• 6 simulated scenarios

Scenario	aa	ac	ea	ec	Ea	Ec
	Random effects					
Form	Add	Add	Exp	Exp	Exp	Exp
ω_V^2	0.0016	0.0016	0.04	0.04	0.25	0.25
ω_{CL}^2	0.01	0.01	0.04	0.04	0.25	0.25
	Residual error					
σ_{inter}	0.15	0.15	0.15	0.15	0.15	0.15
σ_{slope}	0	0.15	0	0.15	0	0.15

Design

- Several designs from 2 to 5 samples
 - {0.05, 0.15, 0.3, 0.6, 1}
 - {0.05, 0.3, 0.6, 1}
 - {0.05, 0.3, 0.6}
 - {0.05, 0.3}
- For each scenario, 1000 subjects with the same design simulated
- Population parameters fixed to their true value
- Estimation of individual parameters by MAP with NONMEM 7. and MONOLIX 4.0

Shrinkage investigation

 Exploration of scatterplots of individual estimates from NONMEM vs simulated parameters along with observed shrinkage

Validation of BMF computation and shrinkage

- Evaluation of the approximation of BMF by MC and FO
- Prediction of W from BMF
- Comparison of W vs observed shrinkage with NONMEM and MONOLIX

NB: Results presented for clearance

Estimated vs simulated parameters and η distribution

Parameter scatterplot

- Identity line
- Mean

η distribution

- A priori
- Estimated

Estimated vs simulated parameters and η distribution

Parameter scatterplot

- Identity line
- Mean

η distribution

- A priori
- Estimated

Estimated vs simulated parameters and η distribution

Estimated vs simulated parameters and η distribution

Estimated vs simulated parameters and η distribution

Results *BMF approximation*

Relative Standard Error on clearance (%)

Scenario	Number of samples	Ω	IMF ⁻¹	BMF ⁻¹	
				FO	МС
аа	2	20	9.0	8.2	8.4
	5	20	5.3	5.1	5.2
ас	2	20	30.8	16.5	16.3
	5	20	12.3	10.5	10.5
еа	2	20	9.0	8.2	8.5
	5	20	5.3	5.1	5.2
ec	2	20	30.8	16.5	16.5
	5	20	12.3	10.5	10.7
Ea	2	50	9.0	8.9	13.1
	5	50	5.3	5.3	6.7
Ec	2	50	30.8	25.9	27.8
	5	50	12.3	12.0	14.7

• BMF⁻¹ from FO close to MC

• BMF⁻¹ lower than Ω and IMF⁻¹

 RSE decreases when number of samples increases

Results *BMF approximation*

Relative Standard Error on clearance (%)

Scenario	Number of samples	Ω	IMF ⁻¹	BMF ⁻¹	
				FO	МС
aa	2	20	9.0	8.2	8.4
	5	20	5.3	5.1	5.2
ac	2	20	30.8	16.5	16.3
	5	20	12.3	10.5	10.5
еа	2	20	9.0	8.2	8.5
	5	20	5.3	5.1	5.2
ec	2	20	30.8	16.5	16.5
	5	20	12.3	10.5	10.7
Ea	2	50	9.0	8.9	13.1
	5	50	5.3	5.3	6.7
Ec	2	50	30.8	25.9	27.8
	5	50	12.3	12.0	14.7

• BMF⁻¹ from FO close to MC

• BMF⁻¹ lower than Ω and IMF⁻¹

 RSE decreases when number of samples increases

FO method used to compute $W(\xi)$ to predict shrinkage

Results *Shrinkage prediction*

Predicted vs observed shrinkage NONMEM MONOLIX 10 5 **Scenarios** 8 8 aa ac ea 09 80 W for CL (%) ec Ea 40 40 Ec 3 3 0 100 20 60 80 20 60 80 40 40 100 0 Sh for CL (%) Sh for CL (%)

- Similar values of observed shrinkage with NONMEM and MONOLIX
- Scatterplot close to the identity line

Conclusion

- Shrinkage influenced by
 - number of samples
 - error model
 - variability of parameters
- Shrinkage reflects distortions in $\hat{\eta}$ distribution
- Computation of BMF by FO adequate
- New formula to predict shrinkage from BMF

- Further evaluations are needed on more "extreme" models: high variances of random effects or high residual error
- Ongoing developments on a more complex Target-Mediated Drug Disposition model
- Use of BMF for individual design optimization for MAP

Backup slides

Estimated vs simulated parameters and η distribution

Estimated vs simulated parameters and η distribution

Estimated vs simulated parameters and η distribution

Results *BMF approximation*

Relative Standard Error on Volume (%)

Scenario	Number of samples	Ω	IMF ⁻¹	BN	1F ⁻¹
				FO	МС
аа	2	20	4.3	4.1	4.3
	5	20	3.5	3.4	3.6
ас	2	20	22.5	14.5	14.2
	5	20	15.0	12.0	11.8
еа	2	20	4.3	4.1	4.2
	5	20	3.5	3.4	3.5
ec	2	20	22.5	14.5	14.4
	5	20	15.0	12.0	12.1
Еа	2	50	4.3	4.2	5.3
	5	50	3.5	3.5	4.1
Ec	2	50	22.5	20.1	19.7
	5	50	15.0	14.3	15.4

• BMF⁻¹ from FO close to MC

• BMF⁻¹ lower than Ω and IMF⁻¹

 RSE decreases when number of samples increases

Results *Shrinkage prediction*

Predicted vs observed shrinkage NONMEM MONOLIX 10 5 **Scenarios** 8 8 aa ac ea 09 80 W for CL (%) ec Ea 40 40 Ec 2 3 0 100 20 60 80 20 60 80 40 40 100 0 Sh for CL (%) Sh for CL (%)

- Similar values of observed shrinkage with NONMEM and MONOLIX
- Scatterplot close to the identity line

Results *Shrinkage prediction (BMF by MC)*

- Similar values of shrinkage for NONMEM and MONOLIX
- Scatterplot close to the identity line

Results *Shrinkage prediction*

- Similar values of shrinkage for NONMEM and MONOLIX
- Scatterplot close to the identity line

Results *Shrinkage prediction (BMF by MC)*

- Similar values of shrinkage for NONMEM and MONOLIX
- Scatterplot close to the identity line

Results *Shrinkage comparison*

NONMEM vs MONOLIX observed shrinkage

• Similar values of shrinkage for NONMEM and MONOLIX