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The context:

Clinical Pharmacology Studies

• Clinical pharmacology studies provide a framework to 

describe the time course of drug effects

– How quickly do drugs work?

– What is the expected magnitude of effect?

– How long will the actions last?

• Models of the time course of drug effects are generally 

constructed to be biologically plausible and are:

– Nonlinear in the parameters

– Have medium dimensionality (5-20 parameters)

– Contain many random effects for patient heterogeneity
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The time course of medicine response
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Nonlinear Mixed Effects Model

• Can be specified as a two stage hierarchical model

• Stage 1: Data model

: jth measurement of ith individual

: a parametric function of the structural model

: model parameters of the ith individual

: design variables 

: residual error, 

• Stage 2: Heterogeneity model

: population mean

: between subject variability, 
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Designs for nonlinear mixed effects 

models

• The Fisher information matrix was described for 

nonlinear mixed effects models in 1997 (Mentré et al)

• Various extensions to this work followed in the next 2-5 

years.

• Various methods have been proposed to accommodate 

the dependence of the design on the prior estimates of 

the parameter values

– ED, EID, API, HClnD

• Most work in pharmacology has concentrated on the 

determinant and related criteria
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• Given by

• Population clinical pharmacology studies

– Design variable: e.g. blood sampling time

– Software: PFIM, POPT/WinPOPT, PopED, PopDes, ….

• Uncontrolled clinical environment

– Out patient

– Emergency room

• Impossible for designs to be conducted exactly per 

protocol

– This leads to unplanned suboptimality in which the clinical 

setting dictates the informativeness of the design
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• A time window of opportunity where nearly optimal 

samples can be taken

• We pre-specify an efficiency                for the ith

window to take a blood sample

and where bi > ai, ai > bi-1
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The issue

• No analytical solution is available for sampling windows 

for nonlinear mixed effects models
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Three techniques for defining sampling 

windows
• Based on the standardised variance

• Optimised windows

• POSTHOC windows

– Marginal

– Joint

• Adaptive sampling windows
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The Surface of the Standardised Variance

Bogacka et al. ICODOE, Memphis, 2005

This method does not currently link the loss  to a specific loss of efficiency 

– but this is not problematic

Requires assumption of independence.
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Optimized Sampling Windows

• Two basic approaches have been proposed for this 

problem:

– Optimize the length of a fixed set of sampling windows assuming 

the windows are symmetric (±W ) around the optimal sampling 

times [1]

• Later work relaxed the assumption of symmetry to allow symmetry on either 

the real or log domain.

– Construct a finite set of potential sampling windows and then 

search over the sampling window space to see which sampling 

windows appear to perform best [2].

• Assumptions of symmetry/prior set of windows contain a 

set of acceptable values…

[1] Graham and Aarons Stat Med 2006; 25: 4004-4019

[2] Ogungbenro and Aarons. J Biopharm Stat 2009
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POSTHOC Windows - Marginal

• This method is similar in spirit to a profile likelihood 

method for determining a confidence interval on a 

parameter (for estimation)

• The process takes the following steps

– The optimal sampling schedule for the population study is 

located

– One time allowed to vary until the loss in efficiency achieves 

some predefined level

– This is repeated for all sampling times

• Very fast but anti-conservative

Duffull et al. Pharm Res 2001;18:83-89

Green and Duffull, JPKPD 2003;30:145-161
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Adaptive Sampling Windows

• A Bayesian method has been proposed for solving for 

sampling windows in a sequential manner for a fixed 

effects model

• Theory:

– If the first sampling time were known then the next sampling 

window could be estimated that fulfilled an pre-specified 

efficiency criteria

• The method provides estimates of the windows – not the 

optimal sampling times

Duffull et al J Biopharm Stat (2010) 
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Aim

• To develop and assess a method for determining 

sampling windows that can be applied to population 

pharmacokinetic studies
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Sampling windows - theory

• An exact solution for sampling windows exists for a case 

where there is only a single sample

– i.e. for any given single sample design the window providing a 

90% efficiency can be computed analytically

• A simple solution (therefore) is to recast the problem into 

one in which the window for any given time point is 

considered as if the other time points were already 

known
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The approach 

– the first sampling time

• Given a design range [tL, tH]

• Given a D-optimal design     

• Determine sampling window for t1 with       efficiency

• The first sampling window SW1 can be calculated 

analytically by setting the subsequent sampling times 

as if they were taken at the D-optimal design points
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Calculation of SW

0

10

20

30

40

50

60

70

80

90

100

tDa1 b1



Modelling and Simulation Lab, School of Pharmacy, University of Otago

The second sampling time…

• Generate                  as a pseudo-sample

• Given a design

• The second sampling window SW2 is obtained by 

conditioning on the pseudo-sample and the remaining 

D-optimal samples
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Recursive Random Sampling

Given    (n) = (t1
(n), t2

(n), …, tk
(n))

and  SW(n) = (SW1
(n), SW2

(n), …, SWk
(n))

= ([a1
(n), b1

(n)], [a2
(n), b2

(n)], …, [ak
(n), bk

(n)])

1) t1
(n+1) ~ p1(SW1

(n+1) | t2
(n), t3

(n), …, tk
(n))

2) t2
(n+1) ~ p2(SW2

(n+1) | t1
(n+1), t3

(n), …, tk
(n))

k) tk
(n+1) ~ pk(SWk

(n+1) | t1
(n+1), t2

(n+1), …, tk-1
(n+1))







Modelling and Simulation Lab, School of Pharmacy, University of Otago

3-parameter bi-exponential model
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Application

• Initial samples:     (0) = (0.59, 3.46, 12.63) 

• Iteration 1:

1) SW1
(1) =  [a1

(1), b1
(1)]  =  [min t1, max t1]  for

= (t1, 3.46, 12.63)            t1 [0, 24]

generate t1
(1) ~  U(a1

(1), b1
(1))    
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Application

• Initial samples:     (0) = (0.59, 3.46, 12.63) 

• Iteration 1:

1) SW1
(1) =  [a1

(1), b1
(1)]  =  [min t1, max t1]  for

= (t1, 3.46, 12.63)            t1 [0, 24]

generate t1
(1) ~  U(a1

(1), b1
(1))    

2) SW2
(1) =  [a2

(1), b2
(1)]  =  [min t2, max t2]  for

= (t1
(1), t2,12.63)              t2 [b1

(1), 24]

generate t2
(1) ~  U(a2

(1), b2
(1))    
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Application

• Initial samples:     (0) = (0.59, 3.46, 12.63) 

• Iteration 1:

1) SW1
(1) =  [a1

(1), b1
(1)]  =  [min t1, max t1]  for

= (t1, 3.46, 12.63)            t1 [0, 24]

generate t1
(1) ~  U(a1

(1), b1
(1))    

2) SW2
(1) =  [a2

(1), b2
(1)]  =  [min t2, max t2]  for

= (t1
(1), t2

(1),12.63)           t2 [b1
(1), 24]

generate t2
(1) ~  U(a2

(1), b2
(1))    

3) SW3
(1) =  [a3

(1), b3
(1)]  =  [min t3, max t3]  for

= (t1
(1), t2

(1),t3)     t3 [b2
(1), 24]

generate t3
(1) ~  U(a3

(1), b3
(1)) 
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Computing pre-posterior mean of sampling 

windows
• Iteration 1:

SW(1) = ([a1
(1), b1

(1)], [a2
(1), b2

(1)], [a3
(1), b3

(1)]) 

• Repeat for 2000 iterations

• Calculate the pre-posterior mean for the boundaries of the 

sampling windows

a1 = mean (a1
(1), a1

(2), …, a1
(2000))

b1 = mean (b1
(1), b1

(2), …, b1
(2000))

b3 = mean (b3
(1), b3

(2), …, b3
(2000))


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Trace Plot
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Auto Correlation Plot
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Sampling windows

• 90% efficiency sampling windows: 

– Pre-posterior mean of the boundaries

(0.28, 1.25), (2.40, 5.31), (9.94, 15.99) 

• The D-optimal time points were

(    0.59, 3.46, 12.63)
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A representation of the conditional sampling 

windows
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• 2 chains with over-dispersed starting points

• 2000 iterations

)13.10,46.2,59.0(1#),0( 

Checking for convergence

)13.15,46.4,59.0(2#),0( 
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Trace Plot for Two Chains



Modelling and Simulation Lab, School of Pharmacy, University of Otago

BGR Ratio Plot
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Discussion

• A method was proposed to determine sampling 

windows for nonlinear mixed effects models

• The method uses a MCMC style recursive sampling 

approach

• At each iteration the windows are computed exactly

• It was not necessary to condition the search such 

that the windows did not overlap

• The method converged rapidly and remained stable 

over subsequent iterations.
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