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Outline

 PODE workshops

 Population optimal design software tools

 Types of problems they address

 Comparison, whether their outputs match

 Approximation options for Fisher information matrix
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Optimal design for population PK/PD models

 PODE Workshop created in 2006 

Population Optimum Design of Experiments

 Theory of optimal experimental design for nonlinear mixed 

effects models and its applications in drug development

 Discussion of population optimal design software started in 

2007, continued in 2008-2011
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Population optimal design software

Five tools available

 PFIM (developed in INSERM, Universitè Paris 7, France)

 PkStaMp (GlaxoSmithKline, Collegeville, U.S.A.)

 PopDes (CAPKR, University of Manchester, UK)

 PopED (Uppsala University, Sweden)

 WinPOPT (University of Otago, New Zealand)

Main application areas: 

pharmacokinetics  (PK) and  pharmacodynamics (PD)



5

Comparison of population design tools

 Key: Fisher information matrix of a properly defined 
single observational unit  (individual patient)

 Calculation of individual matrix  µ(x,θ)

 Identical under the same assumptions for all tools 
(benchmark examples)

 Differences: selection of sampling sequences, algorithmic 
details, libraries of models, types of approximation….

 More from France Mentré
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Pharmacokinetics  (PK)

 PK:  how drug propagates in patient's body 

 Dose → concentration

 PK studies: at different phases of drug development 

 Models: 

 Compartmental, systems of ODE

 Non-compartmental (AUC, Tmax, Cmax)

Example:

One-compartment model, 1st order absorption and linear elimination
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Pharmacodynamics  (PD)

 PK: what body does to the drug

 PD: what drug does to the body, progression of 

clinical endpoint (concentration → effect)

 Drop in blood pressure for hypertensive patients

 Reduction in the number of “bad” cells

 Tumor shrinkage

 Popular PD model: Emax (sigmoidal-shaped curve, 

multi-parameter logistic model) 
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Design of population PK/PD studies

 What we select/optimize (control):

 Location of sampling times

 Number of sampling times per patient

 Number of patients enrolled

 Optimal population designs:
 Optimal: with respect to precision of parameter estimates

 Goal: find the most informative sampling times
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Nonlinear models, multiple responses
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Optimal designs
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Optimal designs     (cont.)

Background for algorithms:  Fedorov (1969,72) – Wynn (1970) 

Backward step: Atwood (1973)
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Optimality criteria, ellipse (θ – θ*)T D-1 (θ - θ*) ≤ 1

D-criterion:   |D| =  λ1 ∙λ2 = (OA ∙OB)2 ; area (V) = π (λ1 ∙λ2 )1/2   

E-criterion:     λ1 = (OA)2 

A-criterion:  tr D =   λ1 + λ2 = (OC)2  = D11 + D22
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Mixed effects model model
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Information matrix for sequence  x
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Design region  X

PkStaMp: Sampling Times Allocation (STand-Alone Application),  

Matlab Platform

Specific type of constraint 

(design region)
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Typical screen: one-compartment,1st order absorption
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More complex setting: cost-based designs

In PkStaMp: (a) Cost c(x) proportional to # of samples in sequence x,  or

(b) Entered by user for each candidate sampling sequence
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Two-compartment model, 1st order absorption, 

Michaelis-Menten elimination:  no analytical solution  (ODE solver)

More complex models: nonlinear kinetics
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More complex models: combined PK/PD model

One-compartment PK and  Emax PD model

ka

Final PK/PD Model
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PK and PD compartments measured, in general, at different times



20

Proposed by France Mentré, Spring 2011: combination drug for 
treating chronic hepatitis C (HCV) infection 

Another benchmark test: HCV
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Design to be tested

 12 sampling times for each patient

 Same times for PK and PD endpoints

Parameterization

 Log-parameters 

 Normal population distribution

 Diagonal population covariance matrix

HCV example: user-defined option

User-defined option and last 2+ years of PkStaMp development:

collaboration with Dr. Alexander Aliev (Institute for Systems 
Analysis, Russian Academy of Sciences, Moscow)

 “Arbitrary” system of ODE, and/or

 “Arbitrary” closed-form solution

 “Arbitrary” number of compartments
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Model specification
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Parameters, dosing (1), sampling (2)
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PODE 2009-2010 comparison

Goal: compare FIM for a particular model/sampling sequence
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PODE 2009-2010 comparison   (cont.)
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PODE 2009-2010 comparison  (cont.)

 Compared   Vara = [μ(x,θ)] -1  produced by different  tools:

identical results under the same assumptions

 Compared   Vara and  Vare :  empirical variance-covariance 
matrix (Monte Carlo  +  estimation in NONMEM and 
Monolix):

 If   block C “excluded”  (C = 0),  and 2nd term in  A
removed, then analytical results (1st order 
approximation) and  Vare are very close  

 If block  C and 2nd term in A are both kept, then there is 
a visible difference for some elements of  Var
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Approximation options

Parameter  ka
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Approximation options   (cont.)

2nd - order approximation for mean/variance

Numerically may be rather tedious
 All derivatives calculated numerically (central differences)

 Derivatives of variance  S require second derivatives of  η

 With 2nd order approximation: fourth derivatives…..
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Approximation options   (cont.)

FOCE:  Lindstrom, Bates (1990)

Mielke, Schwabe (2010)
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Approximation options   (cont.)

Mean response curves 

for one-compartment 

model example 

 Solid - 1st order 

approximation

 Dashed - computed at 

mean values of log-

normal distribution,

 Dotted - Monte Carlo 

average
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Approximation options

 Measures of nonlinearity:
 Curvature measures, intrinsic vs parameter effects

 Bates and Watts (1988), Pázman (1986), Ratkowsky
(1983)

 Simulation studies for PK/PD, Merlé and Tod (2001)

 Criteria values may be substantially affected by 
linearization 

 Designs and relative efficiencies are often not

 PODE 2009-2011 comparison/simulation studies:
 Linearization (1st order) very crude, but performed 

reasonably well without block  C (?)
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Optimal design for PK/PD 

 Chaloner and Verdinelli (1995), “Bayesian 
experimental design”, Stat.Science

 There is a rich related literature, mostly non-Bayesian, on 
design for complex PK and biological models… With a 
few exceptions, this important work is not in the 
mainstream statistics literature…
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Concluding remarks

Goals of population optimal design

 Find most informative sampling times

 Validate the quality of standard/alternative designs (optimal 
design as a reference/benchmarking)

 Test robustness of optimal designs (sampling windows)

 Reduce number of samples with “minimal” loss of precision
 Example: from 16 sampling times – to 8 most informative

D-efficiency   Eff = ( |M(ξ*8)| / |M(ξ16) |)
1/m  = 0.85  (only 15% lost)

 May incorporate costs 

Approximation options?
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