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i Outline

= PODE workshops

= Population optimal design software tools

= Types of problems they address
= Comparison, whether their outputs match

= Approximation options for Fisher information matrix



i Optimal design for population PK/PD models

= PODE Workshop created in 2006
Population Optimum Design of Experiments

= Theory of optimal experimental design for nonlinear mixed
effects models and its applications in drug development

= Discussion of population optimal design software started in
2007, continued in 2008-2011



:-| Population optimal design software

Five tools available

PFIM (developed in INSERM, Universite Paris 7, France)
PkStaMp (GlaxoSmithKline, Collegeville, U.S.A.)
PopDes (CAPKR, University of Manchester, UK)

PopED (Uppsala University, Sweden)

WInPOPT (University of Otago, New Zealand)

Main application areas:

pharmacokinetics (PK) and pharmacodynamics (PD)



i Comparison of population design tools

= Key: Fisher information matrix of a properly defined
single observational unit (individual patient)

= Calculation of individual matrix p(x,0)

= |dentical under the same assumptions for all tools
(benchmark examples)

= Differences: selection of sampling sequences, algorlthmlc
details, libraries of models, types of approximation...

¥ More from France Mentré



$ Pharmacokinetics (PK)

= PK: how drug propagates in patient's body

= Dose — concentration
= PK studies: at different phases of drug development
= Models:

= Compartmental, systems of ODE

= Non-compartmental (AUC, Tmax, Cmax)

Example:
One-compartment model, 15t order absorption and linear elimination

Dose

{ folt) = —kafo(t) |

fi(t) = kufolt) —k.fi(2) @ & }‘ 1
folt:) = fo(ti = 0) + Di, fo(0) = Do, £1(0) = 0. -




:-| Pharmacodynamics (PD)

= PK: what body does to the drug

= PD: what drug does to the body, progression of
clinical endpoint (concentration — effect)
= Drop in blood pressure for hypertensive patients
= Reduction in the number of “bad” cells
= Tumor shrinkage

= Popular PD model: E,, ., (sigmoidal-shaped curve,
multi-parameter logistic model)



i Design of population PK/PD studies

= What we select/optimize (control):
= Location of sampling times
= Number of sampling times per patient
= Number of patients enrolled

= Optimal population designs:

= Optimal: with respect to precision of parameter estimates
= Goal: find the most informative sampling times



Nonlinear models, multiple responses

e Predictor x = (. x9.....x;) - sequence of sampling times,
e Measurements Y = [y(x),....y(x)| - vector,
e Response n(x.0) = [n(x.0),....n(xy, 0)] - vector

Key: w(x,0) - information matrix of a k-dimensional sequence x




Optimal designs

N
Information matrix : 72; patients on seq. X; — My(6) = Z ng (x;.0)

p—|
Variance of the MLE:  Var(@) ~ Ps-*Iir' (Q)
My(0)

M(£.8) = v E wipe(x;, @) - normalized information, per observation

[

= lw;.x; !} - normalized design; w; = n;/N - weights
. g / g

D(.68) = M '(£.6) - normalized variance-covariance matrix
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Optimal designs  (cont)

Criterion of optimality W[D(&,0)] — min:  minimization wrt

o

e weights w;, 0 < w; < 1, Y;w; = 1 (continuous designs)

e admissible sampling sequences x; € X - design region.

Locally D-optimal designs: W = |D(£, 0)

Equivalence Theorem:  Kiefer, Wolfowitz (1960), Fedorov (1972) -

Background for algorithms: Fedorov (1969,72) — Wynn (1970)
Backward step: Atwood (1973)
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Ellipsoid of Concentration, Non—-diagonal D

12
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i DZZ

: 172
9, Dzz B

172 1i2
- 9 +
81 D11 (')1 D11

D-criterion: |D| = A; ‘A, = (OA-OB)?; area (V) =z (A; A, )12
E-criterion: A, = (OA)?
A-criterion: trD = A, + A, =(0C)?> =Dy, + D,,

Optimality criteria, ellipse (0 —0*)" D1 (0 - %) < 1

12



Mixed effects model model

e ~ - response parameters (rate constants)

e ~, - parameters of patient ¢ (sampled from population):
normal, v, ~ N(ﬁ/ﬂ_._ (1), or log-normal (4" - “typical values")

o Data y(zy;) = n(xij,~,) |1+ Ei} +cl g=1,.. k. (1)
el ~ N(0,07). = ~ N(0, 77)

e Combined vector of parameters: 8 = (v"; Q: 07, 0%)

Example: one-compartment model, single dose D at = = 0,

Dk,

(E—ke;?: o e—ﬂ’a_;?:) Loy = (ka ke: L'r)T
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Information matrix for sequence X

(1) Gaussian Y : E[Y|x] =n(x,0), Var[Y|x]=S(x,0)

p(x, 0) - information matrix of a single (k-dimensional) sequence x:

S 1 IS ., OS
fap(X,0) = 5! m r o5 U g1 = ¢

Sp A

S =8(x,0), m =n(x,0) [Muirhead (1982), Magnus and Neudecker (1988) ]

(2) First-order approximation of variance matrix S, model (1): for normal

S(x,0) ~ FQF' + o} Diag[n(x,0) n" (x,0) + FQ F']| + o1,

s ) 9 .
P = Pla) = [dn(x )] I — (k x m,) matrix
d-Yu y=2y%
Retout, Mentré (2003), Gagnon, Leonov (2005)
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Design region X

PkStaMp: Sampling Times Allocation (STand-Alone Application),
Matlab Platform

Specific type of constraint

Selection of sampling sequences: . .
(design region)

e Option 1: specify

- All candidate times (21,29, ... .2)

-

- Number of sampling times per patient & € [kpin. Frasl

.

- Lag between samples: z; ;11 —x;; = A

e Option 2: pre-specify an arbitrary set of candidate sequences in a file
|l
Design region X = {x; = (v;1.....2%1)}
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One-compartment,
Two-compartment,
One-compartment,
Two-compartment,
Two-compartment,
Two-compartment,
One-compartment PK model and Emax PD model
Two-compartment madel, bi-exponential mode

Three-compartment model, continuous infusion

1st order absorption
1st order absorption
cont. infusion

cont. infusion

balus doses

1st order absorption, Michaelis-M

Parameter effect

random W

fixed
constant

Built-in Model) User Model Service

PK parameters

} PkStaMp: One-compartment model, 1st order absorption (1CompOral)

Help

Typical screen: one-compartment,1st order absorption

— Typical values
Parameter effect

£e [i] \Erjd_om v J

Kecl | 015 |lrandom v}

Population Covariance {(Omega) w

Ke L

Ka

[025 | [ 0

Wi
0

0.25

k

= Aigofﬁhm

lterations, max 200

Init. sequences 6
Step size, coeff. 1

Weight cut-off 0.05
Detta deriv. 0.0001 |

Limit of detection | g5

V1 100 lrandom v] 025 |
Micro constaats (%) Ka = Ke
""" (O Ka=Ke
Distribution 2
|>@ Log-normal () Normal
Residual variance — Doses
— Additive
Starting, mg ———
(3) Parameter () Known 0.04 .
v| Repeat
— Proportional :
Maintenanc:
() Parameter  (3) Known 0
Every
To stop at

Candidate sampling times

Read sequences and costs fro

m file

Times |

0001025 051234 710192128

_

[]Forced samples

Howy many samples

Min E Max | 5

Min Defta time | 0.1

I Times :

Costs: Cv +Kk*Cs

Cy 1

Gl 0

|

oz
1
1

Standard sampling windows for optimal design
Uzer-defined sampling windows for optimal desig
Compare optimal and user-defined designs

[ RUN |

[ Exit |




More complex setting: cost-based designs

Measurements at x; associated with cost c(x;),

n

F T 0 ng : o \
E nic(x;) < C = Mg(0)= E a wix;, 0)= E w; fu(x;, 0).

i i=1 t

Information matrix normalized by total cost C,

w; = nic(xy)/C; p(xi,0) = pu(x4,0)/c(x;) = same framework,

same algorithms

Costs in design problems:  Elfving (1952), Cook, Fedorov (1995),
Mentre, Mallet, Baccar (1997), Fedorov, Gagnon, Leonov (2002)
In PkStaMp: (a) Cost c(x) proportional to # of samples in sequence x, or

(b) Entered by user for each candidate sampling sequence 17



i More complex models: nonlinear kinetics

Two-compartment model, 15t order absorption,

®e
®e
®e
®e
®e
®e
®e
®e
Coq,
®e
®e
o
®e
®e
®e
®e
®e

[ folt) = —kafolt) —

{ fit) = kafo(t) (ke +ke)filt) & EEERR + b fat)

L falt) = kg fu(t) — ka1 fa(t),
Dose
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More complex models: combined PK/PD model

One-compartment PK and Emax PD model

Final PK/PD Model

<\ K,

C
E=Eo.-|1- i
IC;, +C,

CL/F

k,: first-order absorption rate constant (h?)

V/F: apparent volume of distribution (L)

CL/F: apparent systemic clearance (L/h)

E,: PD endpoint at baseline (nM/min/mL)

IC,: Drug X plasma concentration causing 50% inhibition of
PD endpoint (ng/mL)

PK and PD compartments measured, in general, at different times

19



Another benchmark test: HCV

Proposed by France Mentré, Spring 2011: combination drug for
treating chronic hepatitis C (HCV) infection

folt) = —kufo(t) + 7(t)
fit) = kafo(t) =k filt)
m(t) = filt)/V;

PK: parameters (/. k.. V1), response 771 (continuous infusion term 17(t))

(. - x. }
qn(t) = = Canlt) = Crg(t)gs(t) + C3
Gpo(t) = — dgolt) + Cugr(t)ga(t)

¢ g(t) = Cy [1 ~ T llzﬂ} ga(t) — cgs(t)

h

'WZ(U _ logg _'T,-'S(?L-)

\
g1(t) - “target cells”, go(t) - infected cells, g3(t) - viral particles (load)

PD: parameters (0. (5.1, ), response 1) 20



i HCV example: user-defined option

Design to be tested

= 12 sampling times for each patient

= Same times for PK and PD endpoints
Parameterization

= Log-parameters

= Normal population distribution

= Diagonal population covariance matrix

User-defined option and last 2+ years of PkStaMp development:

collaboration with Dr. Alexander Aliev (Institute for Systems
Analysis, Russian Academy of Sciences, Moscow)

= “Arbitrary” system of ODE, and/or
= “Arbitrary” closed-form solution

= “Arbitrary” number of compartments
21



Model specification

J User model definition:

Short name: HCV Inf Log

— Model parameters

P(l) = LogKa ~ m
Model description: g(? - i°g§§ T -
LCombined PK (1st order absoprtion/nf) and viral dynamics PD,Iog-parameters] PE‘I': ; ngDel
Output (measured compartments): ggg; : iggIElSU
Central: A(Z)/exp(P(3)) P(7) = Logc
Viral load: loglO(A(5))
v

P -
I J Compartment 2 properties

— Compartments

No. Name Right-hand side in ODE Administering
{1 Depot —exp(P(1l))*A(1) Doses & Infusi]
Central exp(P(1l))*A(l) - exp(P(... None Name: Central 3
3 Target cell 20000 - le-7%A(3)*A(5) ... Doses | | [7]in ODE system [} Measured
4 Infected le-7*A(3)*A(5) - exp(P(... Doses Right-hand side of differential equation:
5 Viral load 100*(1-(A(2)/exp(P(3)))... Doses exp (P (1)) *A(1) - exp(P(2))*A(2)| =
Common sampling times
v
Measured output:
A(2)/exp(P(3)) ~
v

Administering type: lNone v
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ed P orde

Built-in Model User Model Service Help

PK parameters

d

Parameters, dosing (1), sampling (2)

PK parameters

Typical value Effect “ariance
LogKa -.223143 rnd 0.25 A
LogKe -1.89712 rnd 0.25 7
LogVl 4.605170 rnd 0.25
LogDel -1.£0943 rnd 0.25
LogES0 -2.1202é rnd 0.25
Logn 0.€93147 rnd 0.25
Logce 1.945910 rnd 0.25

v
LogKa |-.223143||yna +|[0.25

Population Covariance (Omega) diag. only|

Distribution @

Typical value Effect “ariance
LogKa -.223143 rnd 0.25 A
LogKe -1.89712 rnd 0.25 =
LogVl 4.805170 rnd 0.25
LogDel -1.80943 rnd 0.25
LogES5S0 -2.1202€ rnd 0.25
Logn 0.6°93147 rnd 0.25
Loge 1.945¢10 rnd 0.25

v
LogRa [-.223143|

Population Covariance (Omega) diag. only

Distrioution [Normal 4

Compartment _ERERET v Il

— Administering
— Doses—[] Custom

\rna w|[0-25

Doses

— Residual variance

Times

- — Infusion - R(t)-[/] Custom

Doses Duration  Starting times |
180 1 0 A
1380 1 ) -
130 1 14
l180 1 21
v

— Additive
P et
e
— Proportional
P et
§ e

Candidate sampling times —[ ] Read sequences and costs from file

Common

Times[ 0.001025 051

234710142128

| MinDettatime | 0.1

How many samples

Min[ 12 | Max[ 12 |

|

[]Forced samples

Costs: Cv +k*Cs

(o, (7] [0 ]
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PODE 2009-2010 comparison

Goal: compare FIM for a particular model/sampling sequence
Model: one-compartment, 1st order absorption, single dose D = 70 mg

Response parameters v = (k,, CL,V), k. = CL/V

Individual parameters ~; = v'%, & ~ N(0,9)
~% = (1,0.15,8), © = diag(0.6,0.07,0.02)

Measurements: vy;; = 1(7;, Zij) [1 + enmij]
{zi;} =x=(0.5,1,2,6,24,36,72,120) hours

eigs; e N008), 05, =001; 4=1,....32% g=1,....8

: . J3 0 B0 2 o2 8. 2
Combined parameter 6 = (k;, CL", V7, wi , wgp, wys oyy)

24



PODE 2009-2010 comparison (cont.)

Information matrix p(x, @): block form, Retout and Mentré (2003)

[A €

A =F" S F+3tr (derivatives wrt 7,)
C = % tr (mixed derivatives wrt 7, and [w% 0‘.2\.1])
B = % tr (derivatives wrt [w.,-z-g, o ..-%1])

p(x, @) - information matrix of a single (k-dimensional) sequence x:

. o .1 oM 1 4108 4 0S
3 0 — : eyl R, —— - A
Hap(X,0) = 2o=5" 5= + 5t |57 50-5 5|

25



i PODE 2009-2010 comparison (cont.)

Compared Var, = [u(x,0)] ** produced by different tools:
identical results under the same assumptions

Compared Var, and Var, : empirical variance-covariance
matri)l(' Monte Carlo + estimation in NONMEM and
onolix):

= If block C “excluded” (C =0), and 2nd termin A
removed, then analytical results (15t order
approximation) and Var, are very close

= Ifblock C and 2" term in A are both kept, then there is
a visible difference for some elements of Var

26



& Approximation options

Individual parameters, log-normal distribution:
Vi = fi&': i ~ -»M(O: ),
e Ist-order approximation, E&; =0, Var(§) =V —
Ee(e%) ~ 1, Varg(e%) =~V
e Exact moments: E¢(c%) = e"/2, Varg(e%) = e (¥ — 1),
o |/ = (J‘;Q = B¢ =1, Ecpaer = 1.35; Varyy = 0.6, Varg,qc = 1.50

Parameter k,
27



Approximation options (cont.)

2"d - order approximation for mean/variance

1
Egln(z.7)] = n(x.7") + = tr [H(")9)]

s

etc  —

H(ﬁi____o) _ ()2?7<I P}/)

Numerically may be rather tedious
= All derivatives calculated numerically (central differences)

= Derivatives of variance S require second derivatives of #
= With 2"d order approximation: fourth derivatives.....

28



Approximation options (cont.)

Calculation of mean/variance via Monte Carlo:

. N
. - o1 ,
;) = Eg(yf.j) - N Z Y(Tij)
=t

. N
ral S \ l \ i V12
S(x;) = Vargly;) = QZ[L@I(HH‘-;) —nlz;)]” =
T =l
Numerically straightforward: OK if normal approximation is “reasonable”
FOCE: Lindstrom, Bates (1990)

Mielke, Schwabe (2010)

29



Approximation options (cont.)

Response f(x.B)

Response: at mean values and averaged over curves

]
- = =) |

....... E [f(x.9)]

Mean response curves
for one-compartment
model example

s Solid - 1st order

approximation

= Dashed - computed at

mean values of log-
normal distribution,

s Dotted - Monte Carlo

average

30



i Approximation options

Measures of nonlinearity:

= Curvature measures, intrinsic vs parameter effects

= Bates and Watts (1988), Pazman (1986), Ratkowsky
(1983)

Simulation studies for PK/PD, Merlé and Tod (2001)

= Criteria values may be substantially affected by
linearization

= Designs and relative efficiencies are often not

PODE 2009-2011 comparison/simulation studies:

= Linearization (15t order) very crude, but performed
reasonably well without block C (?)
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i Optimal design for PK/PD

Chaloner and Verdinelli (1995), "Bayesian
experimental design”, Stat.Science
= There is arich related literature, mostly non-Bayesian, on
design for complex PK and biological models... With a

few exceptions, this important work is not in the
mainstream statistics literature...
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Concluding remarks

Goals of population optimal design

Find most informative sampling times

Validate the quality of standard/alternative designs (optimal
design as a reference/benchmarking)

Test robustness of optimal designs (sampling windows)

Reduce number of samples with “minimal” loss of precision
Example: from 16 sampling times — to 8 most informative

D-efficiency Eff = ([M(€*,)| / [M(E,5) [) Y™ = 0.85 (only 15% lost)

May incorporate costs

Approximation options?
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