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The initial problem

2

• Analytic solutions exist for a Gaussian linear 

mixed effect model, but not for a non-linear.

• If normality is assumed, the population 

likelihood could be addressed by:

– Linearization: First Order (FO), etc.

– Approximated by a Laplace Integral 

approximation…

– Using Monte Carlo techniques

– EM-algorithm, Gaussian Quadrature 

etc.



3

Notation
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The model for individual i

i i iy f h 

structural model residual model (noise)
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Notation – Examples of structural model

4

Pharmacokinetic Pharmacodynamic
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Notation – Pharmacokinetic example
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Notation – Pharmacokinetic example

Residual model
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Notation – Summary

7

The model for individual i

i i iy f h 

structural model residual model (noise)

Population parameters

2,  2

Fixed effects Random effects
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Population likelihood

The sum of the marginal log likelihood for all 

individuals, given the population parameters:

 2 2log , ,iL L   

marginal likelihood:

 2|i iL l p d  




 

    2 2| , , , , ,i i i i ip y l PDF N f t       
 

individual likelihood:

probability of individual value:

   2 2, 0,ip PDF N   
 



Calculating Population likelihood by

Laplace Integral Approximation

     
 

2 2 2 2

joint density

, , | | , , |i i i i i

p x

L y p y p d        





 

-∞ ∞

1. Taylor expand ln(p(x)) around peak:

         
 

 
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
      

but p’(x0)=0 because x0 is at a peak

-∞ ∞

p(x)

2. Approximate ln(p(x)) by an unnormalized Gaussian:

   
 

 
2

0
0ln

2!
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x x
p x
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
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3. Approximate Li by the normalizing constant of Q:

 
 0

0

2

ln
iL p x

p x






-∞ ∞

Li

* McKay, Information Theory, Inference and Learning Algorithms.

Cambridge University press 2003



Calculating Population likelihood by

Linearization of the model

1. Taylor expand (linearize) h with respect to residual error εi=0:

     
h

f , h , ,0 ,0i i i iy       



    



2.   Taylor expand (linearize) 1. with respect to individual value 

3.   For simplicity skip interaction term & h(ε=0) and calculate E[y], Var(y):

   
 

    
       22
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Calculating Population likelihood by

Linearization of the model, cont.

4.    Approximate marginal likelihood Li by assuming normality:

Li

Density function of yi~N(E[yi],Var[yi])

-∞ ∞E[yi]

Var[yi]



Calculating Population likelihood by

FO - linearization of the model

Linearize around typical individual 0i 

   

 
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In the end; methods gives exactly the same marginal 

likelihood!
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The FIM for a linear Gaussian Model*

* Mentré et al, and extended by others (Retout, Hooker, Leonov, Ogungbenro etc.)

 2
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Fisher Information Matrix (FIM)

FIM can be calculated in different ways:

*

Full

A C
FIM

C B

 
  
 

Reduced

0

0

A
FIM

B

 
  
 

A* is somewhat modified/updated if full is used, i.e.

Assuming ∂ var(y) w.r.t. the fixed effects≠0 Assuming ∂ var(y) w.r.t. the fixed effects=0

1 11
*

2

V V
A A tr V V

 

   
   

  

Different between

full and reduced
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The new problem
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• FO approximation - close to the empirical 

precision*. 

• However, performance of FIMFull is worse than 

FIMReduced with the FO approximation**

- Linearize around typical individual, not 

enough

- Second order linearization, not enough

- How about conditional approximations?

- FOCE?

* Bazzoli, Retout, Mentré - Fisher information matrix for nonlinear... Statist. Med. 2009

** PODE 2010 (Fedorov & Leonov - Nyberg, Ueckert & Hooker)

** Mielke, Schwabe, Some Considerations on the FIM.. mODa 9, 2010, Physica-Verlag HD. p. 129-136.
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The FIM FOCE approximation*

16

* Retout, Mentré – Further developments of FIM in NLME-models…. J. BioPharm. Stat 2003

 ˆ ~ 0,i N Take the expectation of the population FIM over the individuals

   
 

    
       22
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  
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where FIMi is calculated with the linearization around ˆ
i
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The FIM FOCE approximation
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+ No need to simulate data, “only” individuals

+ A better approximation of the Li is used

- Not linearizing around the mode of Li

- The derivative of the Li w.r.t. the random effects does not change the ˆ
i

A possible solution to the cons:

Use the same method but linearize around the mode instead
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The FIM FOCE approximation around the mode, step 1
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The mode of the marginal likelihood Li

could be calculated using the

Empirical Bayes Estimate (EBEs) by maximizing:

    
ˆ

ˆ ˆarg max , , , |
i

i i i il y p


    

 |i iL l p d 




  

But – EBE calculation is dependent on data (li)

* Lindstrom, Bates – Biometrics, vol 46. No 3, 1990
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The FIM FOCE approximation around the mode, step 2

Approximate the expected data for one individual with 

and calculate the expected EBE for one individual 

   E ,i iy f  

     ,
ˆ

ˆ ˆarg max , , , , |
i

E i i i i il f p


        

i

Residuals in li are now strictly model dependent

   ˆ, ,i if f   

instead of (as previously) data dependent

 ˆ ,i iy f  



20

The FIM FOCE approximation around the mode, step 3

It is straightforward to get updated expected EBE’s when 

doing numerical differences w.r.t. the population 

parameters: 

     ,
ˆ

[ , , ]

ˆ ˆ ˆarg max , , , , |
i

E i h i i i i

h

l f p




     

  

    
  
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The FIM FOCE approximation around the mode

Summary

For each individual contribution to population FIMi:

1. Sample individual ηi from N(0,Ω)

2. Calculate the expected mode

3. Calculate FIMi using FOCE approximation around 

with updating of EBEs when differentiating pop. 

params.

Finally, Monte Carlo integrate over all FIMs:  

,
ˆ

E i

,
ˆ

E i

   ,

1

1
ˆ d , , ,

N

i i E i

i

E FIM FIM FIM
N

  




   
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Investigation of performance of new FOCE method

Example 1 – from last year

At PODE 2009 all Population Optimal Design (OD)

Software should evaluate the same simple Warfarin problem…

 1-compartment model, 1st order absorption, oral dose 70 mg

 Proportional error model (σ2=0.01)

 32 subjects with 8 measurements at

0.5, 1, 2, 6 ,24, 36, 72,120 hours (evaluation)

 Fix all parameters except fixed effect ka

Parameters Fixed effects ω2 (IIV, exp)

CL/F (L/h) 0.15 0.07

V/F (L) 8.0 0.02

ka (1/h) 1.0 0.6



Investigation of performance of new FOCE method

Example 1 - results

Θka RSE(%)

“Truth” NONMEM FOCE SSE (1000) 13.59% [13.06-13.88] *

PopED Full FO 6.71%

PopED Full SO 8.94%

PopED Full old FOCE 4.95%

PopED Full FOCE around mode 13.62%

PopED Reduced FO 13.90%

PopED Reduced SO 14.04%

PopED Reduced FOCE 6.49%

PopED Reduced FOCE around mode 12.5% - 13.8%



Example 2 - PK HCV model

• 2 comp PK model, repeated dosing by fast infusion

• Used Linear ODE solver (matrix exponentials)

• 6 PK parameters, 1 res error

• France Mentré will talk more about this model later today



Results Example 2 PK HCV model
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• Simulations in Monolix by C. Bazzoli (1000 sim/est)

• FOCE method used 100 individual samples (Latin hypercube sampled)



Example 3 – “Very” nonlinear Emax model
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Example 3 – Experimental setup

• 200 individuals with the same design

• 2 samples per individual

• Local D-optimal design



Example 3 – Simulations from Emax model



Example 3

Local D-optimal designs with different approximations



Example 3

Behavior of expected EBE at (30, 30)

* Each expected EBE calculate with 1000 data sets



Behavior of “real” EBE at (30, 30)

* 1000 data sets where simulated for each η sample => 1000 EBES/simulated η



Results, FIM evaluated at (30, 30)

* 1000 Simulations/estimations in NONMEM with FOCE
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Full FIM

Simulations "true" *
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Full FIM
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Results, FIM evaluated at (30, 30)



Results, FIM evaluated at (30, 30)
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Pros and cons of FIM FOCE around mode

+ Address the full/reduced differences (at least in the 

examples we investigated)

+ Possibly more realistic predictions of the precision 

(RSE) 

+ The optimal design might be more accurate

- Slower than previous methods (FO, FOCE)

- Could suffer from shrinkage if very sparse (or 

uninformative) designs

- No closed form solution as in the FO based FIM
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What I would do?

• Use the FO based reduced FIM whenever possible

• After optimizing, evaluate with FOCE Mode FIM 

to possibly get better predictions of precision.

• When not; Evaluate a design with both FO Full and 

FOCE Mode Full

• if similar, use the FO Full FIM to optimize

• otherwise use FOCE Mode Full FIM to optimize
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Thank you for your attention

Take home message – Design is important,

regardless of approximation method….


